{"title":"Forgetting dynamics for items of different categories.","authors":"Antonios Georgiou, Mikhail Katkov, Misha Tsodyks","doi":"10.1101/lm.053713.122","DOIUrl":null,"url":null,"abstract":"<p><p>How the dynamic evolution of forgetting changes for different material types is unexplored. By using a common experimental paradigm with stimuli of different types, we were able to directly cross-examine the emerging dynamics and found that even though the presentation sets differ minimally by design, the obtained curves appear to fall on a discrete spectrum. We also show that the resulting curves do not depend on physical time but rather on the number of items shown. All measured curves were compatible with our previously developed mathematical model, hinting to a potential common underlying mechanism of forgetting.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 2","pages":"43-47"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053713.122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How the dynamic evolution of forgetting changes for different material types is unexplored. By using a common experimental paradigm with stimuli of different types, we were able to directly cross-examine the emerging dynamics and found that even though the presentation sets differ minimally by design, the obtained curves appear to fall on a discrete spectrum. We also show that the resulting curves do not depend on physical time but rather on the number of items shown. All measured curves were compatible with our previously developed mathematical model, hinting to a potential common underlying mechanism of forgetting.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.