{"title":"Trace Elements and Heavy Metal Contents in West Algerian Natural Honey.","authors":"Dalila Bereksi-Reguig, Salim Bouchentouf, Hocine Allali, Agnieszka Adamczuk, Grażyna Kowalska, Radosław Kowalski","doi":"10.1155/2022/7890856","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of trace elements and heavy metals in honey is essential for honey quality and safety and also monitoring environmental pollution. This study aimed to evaluate the composition of thirty-seven honey samples of different botanical origins (14 multifloral and 23 unifloral) obtained from beekeepers located in the west region of Algeria. Inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) methods were used to determine the levels of 19 elements in honey (K, Na, Ca, Mg, Mn, Cu, Fe, Zn, V, Cr, Co, As, Ru, Rh, Cd, W, Pt, Au, and Pb). Ru, Rh, Pt and, Au were not detected in any of the tested honey samples. The most abundant minerals were K, Ca, Na, and Mg ranging within 153.00-989.00 mg/kg, 33.10-502.00 mg/kg, 13.30-281.00 mg/kg, and 20.80-162.00 mg/kg, respectively. Fe, Mn, Zn, and Cu were the most abundant heavy metals while Pb, V, Cr, W, Co, and Cd were the lowest ones (<1 mg/kg) in the honey samples surveyed. Several honey types, lavender, rosemary, mild white mustard, thyme, milk thistle, carob tree, orange tree, <i>Euphorbia</i>, <i>Eucalyptus</i>, camphor, jujube tree, sage, and harmal, were studied, and the statistical analysis was carried out using principal component analysis (PCA) and hierarchical cluster analysis (HCA) techniques to evaluate the data. The results showed that the analyses of mineral content were sufficient to determine the floral origin and their variability may be related to geochemical and geographical differences. On other hand, all elements detected were at levels below safe thresholds.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2022 ","pages":"7890856"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822738/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/7890856","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Analysis of trace elements and heavy metals in honey is essential for honey quality and safety and also monitoring environmental pollution. This study aimed to evaluate the composition of thirty-seven honey samples of different botanical origins (14 multifloral and 23 unifloral) obtained from beekeepers located in the west region of Algeria. Inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) methods were used to determine the levels of 19 elements in honey (K, Na, Ca, Mg, Mn, Cu, Fe, Zn, V, Cr, Co, As, Ru, Rh, Cd, W, Pt, Au, and Pb). Ru, Rh, Pt and, Au were not detected in any of the tested honey samples. The most abundant minerals were K, Ca, Na, and Mg ranging within 153.00-989.00 mg/kg, 33.10-502.00 mg/kg, 13.30-281.00 mg/kg, and 20.80-162.00 mg/kg, respectively. Fe, Mn, Zn, and Cu were the most abundant heavy metals while Pb, V, Cr, W, Co, and Cd were the lowest ones (<1 mg/kg) in the honey samples surveyed. Several honey types, lavender, rosemary, mild white mustard, thyme, milk thistle, carob tree, orange tree, Euphorbia, Eucalyptus, camphor, jujube tree, sage, and harmal, were studied, and the statistical analysis was carried out using principal component analysis (PCA) and hierarchical cluster analysis (HCA) techniques to evaluate the data. The results showed that the analyses of mineral content were sufficient to determine the floral origin and their variability may be related to geochemical and geographical differences. On other hand, all elements detected were at levels below safe thresholds.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.