A Partial Discharge Localization Method for AC XLPE Cable Based on Improved GCC Algorithm

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2023-09-22 DOI:10.1109/OAJPE.2023.3318514
Maosen Guo;Jiajie Xu;Yi Zhang;Xiaolong Xiao;Zhencheng Yang;Zaijun Wu
{"title":"A Partial Discharge Localization Method for AC XLPE Cable Based on Improved GCC Algorithm","authors":"Maosen Guo;Jiajie Xu;Yi Zhang;Xiaolong Xiao;Zhencheng Yang;Zaijun Wu","doi":"10.1109/OAJPE.2023.3318514","DOIUrl":null,"url":null,"abstract":"Due to the influence of electromagnetic noise and other factors, existing cable partial discharge location methods cannot accurately locate discharge faults. To handle it, this paper proposes an online localization method for cable partial discharge signals that is suitable for practical engineering applications, based on the double-end localization method. The proposed method uses an improved generalized correlation algorithm to estimate the signal time delay, and takes into account the wave speed uncertainty of the local discharge signal. To improve local localizing accuracy under multiple localizing samples, a trimmed-mean data filtering speed algorithm is employed. Simulation and experimental results demonstrate that the proposed method effectively enhances time delay estimation accuracy and reduces localization error, even under complex electromagnetic noise environment and restricted sampling rates of detection equipment, when compared to traditional time delay estimation localization methods. The positioning accuracy of partial discharge in field experiments reached 97.43%-99.89%, which meets actual engineering requirements.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10261236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10261236/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the influence of electromagnetic noise and other factors, existing cable partial discharge location methods cannot accurately locate discharge faults. To handle it, this paper proposes an online localization method for cable partial discharge signals that is suitable for practical engineering applications, based on the double-end localization method. The proposed method uses an improved generalized correlation algorithm to estimate the signal time delay, and takes into account the wave speed uncertainty of the local discharge signal. To improve local localizing accuracy under multiple localizing samples, a trimmed-mean data filtering speed algorithm is employed. Simulation and experimental results demonstrate that the proposed method effectively enhances time delay estimation accuracy and reduces localization error, even under complex electromagnetic noise environment and restricted sampling rates of detection equipment, when compared to traditional time delay estimation localization methods. The positioning accuracy of partial discharge in field experiments reached 97.43%-99.89%, which meets actual engineering requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进GCC算法的交流交联聚乙烯电缆局部放电定位方法
由于电磁噪声等因素的影响,现有的电缆局部放电定位方法无法准确定位放电故障。针对这一问题,本文在双端定位方法的基础上,提出了一种适合工程实际的电缆局部放电信号在线定位方法。该方法采用改进的广义相关算法估计信号时延,并考虑了局部放电信号的波速不确定性。为了提高多定位样本下的局部定位精度,采用了一种裁剪均值数据滤波速度算法。仿真和实验结果表明,即使在复杂的电磁噪声环境和检测设备采样率受限的情况下,与传统的时延估计定位方法相比,该方法也能有效提高时延估计精度,减小定位误差。现场试验局部放电定位精度达到97.43% ~ 99.89%,满足工程实际要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Data Driven Real-Time Dynamic Voltage Control Using Decentralized Execution Multi-Agent Deep Reinforcement Learning Global Research Priorities for Holistic Integration of Water and Power Systems Floating Neutral Detection Using Actual Generation of Form 2S Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1