{"title":"Frequency and polarisation selective surface for sub-millimetre wave atmospheric remote sensing","authors":"Zhaoran Chen, Yuying Li, Kaiyan Huang, Guozhong Zhao, Jinshan Deng, Zezhong Wang, Junjie Hu, Xiayuan Yao","doi":"10.1049/mia2.12427","DOIUrl":null,"url":null,"abstract":"<p>A novel Frequency and Polarisation Selective Surface (FPSS) is proposed, which separates two adjacent bands with a narrow transition zone by the staggered separation scheme and is suitable for atmospheric remote sensing. The traditional FSS is transparent in a particular frequency band for both the TE and TM polarisations, while it is opaque in another band for both orthogonal polarisations. The FPSS is introduced in a new splitting scheme that operates above 300 GHz. The channel 420–430 GHz of the TE polarisation and the channel 360–400 GHz of the TM polarisation transmit in the FPSS. In contrast, the band 360–400 GHz of the TE polarisation and the channel 420–430 GHz of the TM polarisation are reflected. The water vapour and the oxygen profiles are detected by the 380 GHz band and the 425 GHz band, respectively. The insertion loss is lower than 1 dB, and the reflection band rejection is superior to 10 dB in the experiment, which determine the sensitivities of the bright temperature by 1.5 (RMS K). The scattered wave of the FPSS is calculated through the far field pattern, the maximum of which is about 5%. The side effect of the scattered wave is able to be ignored in the optical path.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"17 14","pages":"1062-1072"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12427","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12427","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Frequency and Polarisation Selective Surface (FPSS) is proposed, which separates two adjacent bands with a narrow transition zone by the staggered separation scheme and is suitable for atmospheric remote sensing. The traditional FSS is transparent in a particular frequency band for both the TE and TM polarisations, while it is opaque in another band for both orthogonal polarisations. The FPSS is introduced in a new splitting scheme that operates above 300 GHz. The channel 420–430 GHz of the TE polarisation and the channel 360–400 GHz of the TM polarisation transmit in the FPSS. In contrast, the band 360–400 GHz of the TE polarisation and the channel 420–430 GHz of the TM polarisation are reflected. The water vapour and the oxygen profiles are detected by the 380 GHz band and the 425 GHz band, respectively. The insertion loss is lower than 1 dB, and the reflection band rejection is superior to 10 dB in the experiment, which determine the sensitivities of the bright temperature by 1.5 (RMS K). The scattered wave of the FPSS is calculated through the far field pattern, the maximum of which is about 5%. The side effect of the scattered wave is able to be ignored in the optical path.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf