The traditional co-polarised metasurface achieves 360° phase coverage only at the resonant frequency but not full phase coverage across a wide bandwidth. This paper proposes a multilayer structure metasurface, which composes of five layers of metal patch and four layers of medium, forming the Fabry–Perry resonator, using the principle of the cancellation of two polarisation conversion, which can achieve a wideband efficient co-polarisation transmission. Based on the metasurface transmission phase principle, 360° phase coverage has been achieved by changing the geometric parameters of the intermediate metal patches. Through phase compensation arrangement, a metalens is designed using the proposed metasurface unit cell. At the same time, horn antenna is used as a feed to feed the metalens, which can significantly improve the gain of the antenna within a wideband. Simulated and measured results show that the proposed metalens antenna operates at 22–26 GHz, and the maximum measured gain of the metalens antenna reaches 24.16 dBi at 25 GHz, which is 10.85 dB higher than the horn antenna without metasurface compensation, showing good focusing performance. The proposed multilayer metasurface breaks the narrow band limit of the traditional stacked metasurface in principle, opening a way in the broadband metasurface design.
This paper presents a novel millimetre-wave (mmWave) 2D wide-angle scanning (WAS) phased array antenna (PAA) based on decoupling surface (DS). The proposed element is a coaxial feeding stacked patch antenna structure that consists of an L-shape coaxial probe, substrate integrated waveguide cavity, slot layer, radiating patch, DS and defective ground structure. The simulated impedance bandwidth for the element is 14.85% (26.18–30.34 GHz). The simulated result of the 2 × 2 array shows that the designed antenna based on DS achieves an isolation of ≥19 dB within the bandwidth. To validate the scanning capabilities of the proposed antenna, an 8 × 8 PAA prototype is fabricated and measured. The measured scanning range of the prototype achieves a 2D WAS range of ±56° at 27 GHz. The proposed antenna shows great potential in application scenarios, such as automotive radar and satellite communication due to its compact design and ability to achieve WAS in two dimensions.
This paper presents a novel wideband microstrip patch antenna (MPA) characterised by a straightforward structure and operational efficacy across four resonances. The antenna consists of a truncated square patch, a coplanar capacitive feed and a slot on the patch. The square radiating patch is strategically truncated at its four corners to perturb the electric field distribution characteristic of the TM0,2 mode, thereby facilitating the generation of a unidirectional far-field pattern. Extensive analysis has elucidated the mechanism through which corner truncation diminishes the electric field peak associated with the TM0,2 mode at the centre, resulting in the transformation of the dual-beam pattern into a distinct single beam pattern. In addition, unlike conventional approaches that require additional components such as shorting pins, this approach reallocates three radiative modes—specifically TM1,0, TM0,2, and TM1,2—resulting in a simplified structure. Finally, a coplanar capacitive feed and a slot are employed to boost the input impedance frequency bandwidth and generate the fourth resonance, respectively. Therefore, four adjacent resonances are simultaneously excited by this method and a wide frequency bandwidth of approximately 80% with stable unidirectional radiation pattern and same polarisation are fulfilled. A prototype of the antenna is fabricated and measured to validate the design procedure.
This work presents the effect of temperature change on the capacitance of silicon PIN diodes and the resulting change in performance of RF limiters at very high frequency (VHF). Device temperatures were varied between −25 ºC and 100 ºC, with small-signal parameters (including device capacitance) extracted at regular temperature increments and bias voltages from −20 Vdc to +3 Vdc using a multi-bias parameter extraction method. It was found that the junction capacitance of the four PIN diodes under investigation increases with temperature, as expected from carrier lifetime behaviour, while results also confirmed prior observations of an inverse relationship between forward-biased series resistance and temperature. Devices were subsequently tested in two different limiter topologies through high-power transient measurements. It was found that the combination of increased capacitance and decreased resistance with increasing temperature increases the transient spike leakage and decreases the flat leakage of a limiter. It was also concluded that, for VHF, an anti-parallel topology provides the best performance over a wide range of temperatures.