Arctic Permafrost Thawing Enhances Sulfide Oxidation

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2023-09-22 DOI:10.1029/2022GB007644
Preston Cosslett Kemeny, Gen K. Li, Madison Douglas, William Berelson, Austin J. Chadwick, Nathan F. Dalleska, Michael P. Lamb, William Larsen, John S. Magyar, Nick E. Rollins, Joel Rowland, M. Isabel Smith, Mark A. Torres, Samuel M. Webb, Woodward W. Fischer, A. Joshua West
{"title":"Arctic Permafrost Thawing Enhances Sulfide Oxidation","authors":"Preston Cosslett Kemeny,&nbsp;Gen K. Li,&nbsp;Madison Douglas,&nbsp;William Berelson,&nbsp;Austin J. Chadwick,&nbsp;Nathan F. Dalleska,&nbsp;Michael P. Lamb,&nbsp;William Larsen,&nbsp;John S. Magyar,&nbsp;Nick E. Rollins,&nbsp;Joel Rowland,&nbsp;M. Isabel Smith,&nbsp;Mark A. Torres,&nbsp;Samuel M. Webb,&nbsp;Woodward W. Fischer,&nbsp;A. Joshua West","doi":"10.1029/2022GB007644","DOIUrl":null,"url":null,"abstract":"<p>Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw-induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (<i>p</i>CO<sub>2</sub>) is relatively unconstrained. Resolving this uncertainty is important as thaw-driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean-atmosphere system and increase <i>p</i>CO<sub>2</sub>, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate (<math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${{\\text{SO}}_{4}}^{2-}$</annotation>\n </semantics></math>) sulfur (<sup>34</sup>S/<sup>32</sup>S) and oxygen (<sup>18</sup>O/<sup>16</sup>O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact on <i>p</i>CO<sub>2</sub>. Calculations found that approximately 80% of <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${{\\text{SO}}_{4}}^{2-}$</annotation>\n </semantics></math> in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover, <sup>34</sup>S/<sup>32</sup>S ratios, <sup>13</sup>C/<sup>12</sup>C ratios of dissolved IC, and sulfur X-ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values of <i>p</i>CO<sub>2</sub> over timescales shorter than carbonate compensation (∼10<sup>4</sup> yr) and, for mainstem samples, higher values of <i>p</i>CO<sub>2</sub> over timescales longer than carbonate compensation but shorter than the residence time of marine <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${{\\text{SO}}_{4}}^{2-}$</annotation>\n </semantics></math> (∼10<sup>7</sup> yr). Furthermore, the absolute concentrations of <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${{\\text{SO}}_{4}}^{2-}$</annotation>\n </semantics></math> and Mg<sup>2+</sup> in the Koyukuk River, as well as the ratios of <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${{\\text{SO}}_{4}}^{2-}$</annotation>\n </semantics></math> and Mg<sup>2+</sup> to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale-dependent feedback on warming.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022GB007644","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022GB007644","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw-induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw-driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean-atmosphere system and increase pCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate ( SO 4 2 ${{\text{SO}}_{4}}^{2-}$ ) sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact on pCO2. Calculations found that approximately 80% of SO 4 2 ${{\text{SO}}_{4}}^{2-}$ in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover, 34S/32S ratios, 13C/12C ratios of dissolved IC, and sulfur X-ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values of pCO2 over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values of pCO2 over timescales longer than carbonate compensation but shorter than the residence time of marine SO 4 2 ${{\text{SO}}_{4}}^{2-}$ (∼107 yr). Furthermore, the absolute concentrations of SO 4 2 ${{\text{SO}}_{4}}^{2-}$ and Mg2+ in the Koyukuk River, as well as the ratios of SO 4 2 ${{\text{SO}}_{4}}^{2-}$ and Mg2+ to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale-dependent feedback on warming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极永久冻土解冻促进硫化物氧化
永久冻土退化正在改变整个北极的生物地球化学过程。解冻引起的有机质转化变化和矿物风化反应影响着北极河流中无机碳(IC)和碱度(ALK)的通量。然而,这些变化的通量对大气中二氧化碳浓度(二氧化碳分压)的净影响相对不受限制。解决这一不确定性非常重要,因为融化导致的IC和ALK通量的变化可能在全球碳循环中产生反馈。通过硫化物氧化增强硫酸的产生尤其缺乏量化,尽管它有可能从海洋-大气系统中去除ALK并增加二氧化碳分压,产生正反馈,导致更多的变暖和永久冻土退化。在这项工作中,我们根据2018年夏季在Huslia村附近收集的水和沉积物样本,量化了Koyukuk河的风化作用。Koyukuk河是育空河的一条主要支流,排水于阿拉斯加中部的不连续永久冻土。利用主要离子丰度和硫酸盐(so4 2−${{\text{SO}}_{4}}^{2-}$)硫(34S/32S)和我们使用MEANDIR反演模型来量化一系列风化过程的相对重要性及其对二氧化碳分压的净影响。计算发现,大约80%的so4 2−${{\text{SO}}_{4}}^{2-}$在主系统样本中推导自硫化物与蒸发岩溶解的余物氧化。此外,主河道、次级河道和河漫滩孔隙流体和沉积物样品的溶解IC的34S/32S比值、13C/12C比值以及硫x射线吸收光谱显示,河漫滩内微生物硫酸盐有一定程度的还原。ALK和IC的风化通量导致pCO2在较短的时间尺度上的值低于碳酸盐补偿(~ 104年),对于主要样品,在比碳酸盐补偿时间长但比海洋so4.2−停留时间短的时间尺度上,pCO2值更高${{\文本{所以}}_ {4}}^ {2 -}$ ( ∼107年)。此外,Koyukuk河中so4 2- ${{\text{SO}}_{4}}^{2-}$和Mg2+的绝对浓度;so4 2−${{\text{SO}}_{4}}^{2-}$和Mg2+与其他溶解风化产物的比值;在过去的50年里有所增加。通过类比育空河的类似趋势,我们将这些变化解释为反映了由于先前冻结沉积物的持续暴露以及浅层和深层流动路径对活动通道的贡献变化而导致的硫化物氧化增强。总的来说,这些发现证实,硫化物氧化是永久冻土退化的一个重要结果,硫循环对永久冻土融化的响应与变暖的时间尺度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Indian Ocean Acidification and Its Driving Mechanisms Over the Last Four Decades (1980–2019) Off-Shelf Transport and Biogeochemical Cycling of Terrestrial Organic Carbon Along the East Siberian Continental Margin Spatial Variability and Source Identification of Trace Elements in Aerosols From Northwest Pacific Marginal Sea, Indian Ocean and South Pacific to Antarctica Issue Information Observed APO Seasonal Cycle in the Pacific: Estimation of Autumn O2 Oceanic Emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1