Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2023-12-01 DOI:10.1016/j.progpolymsci.2023.101764
Catherine Lefay, Yohann Guillaneuf
{"title":"Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach","authors":"Catherine Lefay,&nbsp;Yohann Guillaneuf","doi":"10.1016/j.progpolymsci.2023.101764","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Polymers have many advantages such as low weight, low cost, and, importantly, stability under thermal, chemical, and mechanical stress. This stability, on the other hand, leads to criticism for causing environmental pollution on a macro-scale and via long-lasting microscopic plastic fragments (microplastics). Since it is very difficult but also very expensive to design brand-new materials that could both have the desired properties (mechanical, thermal, solvent resistance, etc.) and that are in the same time either recyclable and/or biodegradable, transforming already known materials to make them biodegradable/recyclable is more interesting. This approach relies on the introduction of labile/cleavable bonds onto the polymer backbone. The degradation could thus occur from these weak bonds leading to </span>oligomers<span> that could be easily recyclable and/or bioassimilable. This approach is currently applied to all polymerization techniques and led to interesting alternatives to numerous polymers ranging from polyolefins (polyethylene, </span></span>polypropylene, …), </span>polyethylene oxide<span><span>, polyesters, polyamides, </span>vinyl polymers<span>, thermosets, etc. This review thus aimed at giving a comprehensive overview of the chemistries/monomers that could be used for the different polymerization processes but also described the alternatives to common polymers whatever the polymerization process. An emphasis will be put on the degradation/biodegradation/recycling properties of the new materials.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"147 ","pages":"Article 101764"},"PeriodicalIF":26.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023001181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers have many advantages such as low weight, low cost, and, importantly, stability under thermal, chemical, and mechanical stress. This stability, on the other hand, leads to criticism for causing environmental pollution on a macro-scale and via long-lasting microscopic plastic fragments (microplastics). Since it is very difficult but also very expensive to design brand-new materials that could both have the desired properties (mechanical, thermal, solvent resistance, etc.) and that are in the same time either recyclable and/or biodegradable, transforming already known materials to make them biodegradable/recyclable is more interesting. This approach relies on the introduction of labile/cleavable bonds onto the polymer backbone. The degradation could thus occur from these weak bonds leading to oligomers that could be easily recyclable and/or bioassimilable. This approach is currently applied to all polymerization techniques and led to interesting alternatives to numerous polymers ranging from polyolefins (polyethylene, polypropylene, …), polyethylene oxide, polyesters, polyamides, vinyl polymers, thermosets, etc. This review thus aimed at giving a comprehensive overview of the chemistries/monomers that could be used for the different polymerization processes but also described the alternatives to common polymers whatever the polymerization process. An emphasis will be put on the degradation/biodegradation/recycling properties of the new materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可回收/可降解材料通过插入不稳定/可切割键使用共聚体方法
聚合物具有许多优点,如重量轻,成本低,重要的是,在热,化学和机械应力下的稳定性。另一方面,这种稳定性导致人们批评它在宏观尺度上通过持久的微观塑料碎片(微塑料)造成环境污染。由于设计既能具有所需性能(机械、热、耐溶剂等)又能同时可回收和/或可生物降解的全新材料非常困难,也非常昂贵,因此将已知材料转化为可生物降解/可回收材料就更有趣了。这种方法依赖于在聚合物主链上引入不稳定/可切割键。因此,这些弱键的降解可能导致低聚物的产生,这些低聚物可以很容易地回收和/或生物吸收。这种方法目前应用于所有的聚合技术,并导致了许多聚合物的有趣替代品,包括聚烯烃(聚乙烯,聚丙烯,…),聚氧化物,聚酯,聚酰胺,乙烯基聚合物,热固性聚合物等。因此,本综述旨在全面概述可用于不同聚合工艺的化学物质/单体,并描述各种聚合工艺中常见聚合物的替代品。重点将放在新材料的降解/生物降解/回收特性上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1