首页 > 最新文献

Progress in Polymer Science最新文献

英文 中文
Polyesters and deep eutectic solvents: From synthesis through modification to depolymerization
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-02-14 DOI: 10.1016/j.progpolymsci.2025.101930
Magdalena Zdanowicz, Sandra Paszkiewicz, Miroslawa El Fray
Thermoplastic polyesters constitute an important class of materials in today's world due to their unique combination of properties, versatility, recyclability, sustainability, and other advantages. A wide range of monomers used in polyesters synthesis lead to their usage in various industries, such as packaging, automotive, or electronics. Poly(ethylene terephthalate) (PET) and other thermoplastic polyesters have been around for decades, however, nowadays, with growing problems such as microplastic migration, growth of landfills, and decreasing sources of fossil fuels, the lack of their biodegradability or the high cost of biodegradable ones make it necessary to search for greener solutions. A novel group of media: deep eutectic solvents (DESs) that have found applications in many areas of science, can also be applied in polyester technology. This review is a holistic approach presenting polyesters in every step of their technology. DESs as easy-to-prepare, green, and cheap alternatives to the organic solvents, metal salts, and ionic liquids employed as reaction media or catalysts. In polyester synthesis, DESs serve as monomer sources, reaction media, and catalysts, i.e. monomeric DESs facilitate solvent-free, autocatalyzed polymerization and production of safe and biodegradable materials that can be applied, for example, in pharmaceutical or medicine engineering. Some DESs cannot depolymerize polyesters, but can render their surfaces more hydrophilic without affecting crystallinity and thus hold promise as functional additives (interfacial/active agents, plasticizers and compatibilizers) for polyesters and their blends. DESs have been widely used in the depolymerization of polyesters (mainly PET but also poly(lactic acid) and poly(ethylene 2,5-furanoate)) as cheaper or greener catalysts or reaction media (or both) with conversion up to 100% and high yield of monomer. In this paper, we consider polyesters and DES issue from the “cradle-to-grave” or even "cradle-to-grave-to-cradle" viewpoint emphasizing the importance of solvolysis as a chemical recycling method. Finally, we present the future perspectives and possibilities of DES usage in polyester technology.
{"title":"Polyesters and deep eutectic solvents: From synthesis through modification to depolymerization","authors":"Magdalena Zdanowicz, Sandra Paszkiewicz, Miroslawa El Fray","doi":"10.1016/j.progpolymsci.2025.101930","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2025.101930","url":null,"abstract":"Thermoplastic polyesters constitute an important class of materials in today's world due to their unique combination of properties, versatility, recyclability, sustainability, and other advantages. A wide range of monomers used in polyesters synthesis lead to their usage in various industries, such as packaging, automotive, or electronics. Poly(ethylene terephthalate) (PET) and other thermoplastic polyesters have been around for decades, however, nowadays, with growing problems such as microplastic migration, growth of landfills, and decreasing sources of fossil fuels, the lack of their biodegradability or the high cost of biodegradable ones make it necessary to search for greener solutions. A novel group of media: deep eutectic solvents (DESs) that have found applications in many areas of science, can also be applied in polyester technology. This review is a holistic approach presenting polyesters in every step of their technology. DESs as easy-to-prepare, green, and cheap alternatives to the organic solvents, metal salts, and ionic liquids employed as reaction media or catalysts. In polyester synthesis, DESs serve as monomer sources, reaction media, and catalysts, i.e. monomeric DESs facilitate solvent-free, autocatalyzed polymerization and production of safe and biodegradable materials that can be applied, for example, in pharmaceutical or medicine engineering. Some DESs cannot depolymerize polyesters, but can render their surfaces more hydrophilic without affecting crystallinity and thus hold promise as functional additives (interfacial/active agents, plasticizers and compatibilizers) for polyesters and their blends. DESs have been widely used in the depolymerization of polyesters (mainly PET but also poly(lactic acid) and poly(ethylene 2,5-furanoate)) as cheaper or greener catalysts or reaction media (or both) with conversion up to 100% and high yield of monomer. In this paper, we consider polyesters and DES issue from the “cradle-to-grave” or even \"cradle-to-grave-to-cradle\" viewpoint emphasizing the importance of solvolysis as a chemical recycling method. Finally, we present the future perspectives and possibilities of DES usage in polyester technology.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"80 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From radical to reversible-deactivation radical polymerization of ethylene
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1016/j.progpolymsci.2025.101932
F. Baffie, L. Sinniger, M. Lansalot, V. Monteil, F. D'Agosto
The present paper reviews advancements in reversible-deactivation radical polymerization (RDRP) of ethylene. Polyethylene, one of the most produced polymers, is traditionally made using high-pressure radical polymerization (RP) or catalytic coordination-insertion methods. However, the harsh conditions required for RP and ethylene low reactivity have limited laboratory-scale innovations. Efforts to develop milder polymerization conditions (< 100°C, < 500 bar) have facilitated the exploration of RDRP techniques applied to ethylene. RDRP based on reversible termination or degenerative transfer have been investigated. Among them, those based on degenerative transfer such as reversible addition-fragmentation chain transfer (RAFT), organotellurium mediated radical polymerization (TeRP) or iodine transfer polymerization (ITP) proved more successful, enabling not only controlled homopolymerization of ethylene but also the synthesis of well-defined (block) copolymers based on ethylene.
{"title":"From radical to reversible-deactivation radical polymerization of ethylene","authors":"F. Baffie, L. Sinniger, M. Lansalot, V. Monteil, F. D'Agosto","doi":"10.1016/j.progpolymsci.2025.101932","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2025.101932","url":null,"abstract":"The present paper reviews advancements in reversible-deactivation radical polymerization (RDRP) of ethylene. Polyethylene, one of the most produced polymers, is traditionally made using high-pressure radical polymerization (RP) or catalytic coordination-insertion methods. However, the harsh conditions required for RP and ethylene low reactivity have limited laboratory-scale innovations. Efforts to develop milder polymerization conditions (&lt; 100°C, &lt; 500 bar) have facilitated the exploration of RDRP techniques applied to ethylene. RDRP based on reversible termination or degenerative transfer have been investigated. Among them, those based on degenerative transfer such as reversible addition-fragmentation chain transfer (RAFT), organotellurium mediated radical polymerization (TeRP) or iodine transfer polymerization (ITP) proved more successful, enabling not only controlled homopolymerization of ethylene but also the synthesis of well-defined (block) copolymers based on ethylene.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"87 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationally Designed High-Temperature Polymer Dielectrics for Capacitive Energy Storage: An Experimental and Computational Alliance
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1016/j.progpolymsci.2025.101931
Pritish S Aklujkar, Rishi Gurnani, Pragati Rout, Ashish R Khomane, Irene Mutegi, Mohak Desai, Amy Pollock, John Toribio, Jing Hao, Yang Cao, Rampi Ramprasad, Gregory Sotzing
Polymer-based electrostatic capacitors find critical use in high-temperature applications such as electrified aircraft, automobiles, space exploration, geothermal/nuclear power plants, wind pitch control, and pulsed power systems. However, existing commercial all-organic polymer dielectrics suffer from significant degradation and failure at elevated temperatures due to their limited thermal stability. Consequently, these capacitors require additional cooling systems, that require increased system load and costs. Traditionally, an inability to directly predict or model key properties - such as thermal stability, breakdown strength, and energy density has been an impediment to the design of such polymers. To enhance the experimentation and instinctive-driven approach to polymer discovery there has been recent progress in developing a modern co-design approach. This review highlights the advancements in a synergistic rational co-design approach for all-organic polymer dielectrics that combines artificial intelligence (AI), experimental synthesis, and electrical characterization. A particular focus is given to the identification of polymer structural parameters that improve the capacitive energy storage performance. Important structural elements, also known as proxies, are recognized with the rational co-design approach. The central constituents of AI and their influence on accelerating the discovery of new proxies, and polymers are presented in detail. Recent success and critical next steps in the field showcase the potential of the co-design approach.
{"title":"Rationally Designed High-Temperature Polymer Dielectrics for Capacitive Energy Storage: An Experimental and Computational Alliance","authors":"Pritish S Aklujkar, Rishi Gurnani, Pragati Rout, Ashish R Khomane, Irene Mutegi, Mohak Desai, Amy Pollock, John Toribio, Jing Hao, Yang Cao, Rampi Ramprasad, Gregory Sotzing","doi":"10.1016/j.progpolymsci.2025.101931","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2025.101931","url":null,"abstract":"Polymer-based electrostatic capacitors find critical use in high-temperature applications such as electrified aircraft, automobiles, space exploration, geothermal/nuclear power plants, wind pitch control, and pulsed power systems. However, existing commercial all-organic polymer dielectrics suffer from significant degradation and failure at elevated temperatures due to their limited thermal stability. Consequently, these capacitors require additional cooling systems, that require increased system load and costs. Traditionally, an inability to directly predict or model key properties - such as thermal stability, breakdown strength, and energy density has been an impediment to the design of such polymers. To enhance the experimentation and instinctive-driven approach to polymer discovery there has been recent progress in developing a modern co-design approach. This review highlights the advancements in a synergistic rational co-design approach for all-organic polymer dielectrics that combines artificial intelligence (AI), experimental synthesis, and electrical characterization. A particular focus is given to the identification of polymer structural parameters that improve the capacitive energy storage performance. Important structural elements, also known as proxies, are recognized with the rational co-design approach. The central constituents of AI and their influence on accelerating the discovery of new proxies, and polymers are presented in detail. Recent success and critical next steps in the field showcase the potential of the co-design approach.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"170 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogel toughening resets biomedical application boundaries
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-02-01 DOI: 10.1016/j.progpolymsci.2025.101929
Yitian Teng , Jiayu Chi , Jinjian Huang , Ze Li , Sicheng Li , Xiuwen Wu , Linyong Zhu , Jianan Ren
Hydrogels have attracted significant interest as promising biomedical materials due to their tunable physiochemical features, tailorable microstructures, high water content, and adjustable mechanical properties Despite their intrinsic advantages, the mismatch in mechanical performance between traditional hydrogels and tissues has severely restricted their utility in practical settings, generating an urgent need for developing tough hydrogels that can be used in continuous load-bearing scenarios without sacrificing other equally important mechanical features. This review summarises the evolving synthesis rationale and strategies to develop tough hydrogels, including recent considerations of biomimetic designs, which enables diverse applications of hydrogels in tissue engineering, adhesives, and drug delivery system Although challenges remain in this field, the translational applications of hydrogels are rapidly progressing, broadening the scope of material science and biomedicine.
{"title":"Hydrogel toughening resets biomedical application boundaries","authors":"Yitian Teng ,&nbsp;Jiayu Chi ,&nbsp;Jinjian Huang ,&nbsp;Ze Li ,&nbsp;Sicheng Li ,&nbsp;Xiuwen Wu ,&nbsp;Linyong Zhu ,&nbsp;Jianan Ren","doi":"10.1016/j.progpolymsci.2025.101929","DOIUrl":"10.1016/j.progpolymsci.2025.101929","url":null,"abstract":"<div><div>Hydrogels have attracted significant interest as promising biomedical materials due to their tunable physiochemical features, tailorable microstructures, high water content, and adjustable mechanical properties Despite their intrinsic advantages, the mismatch in mechanical performance between traditional hydrogels and tissues has severely restricted their utility in practical settings, generating an urgent need for developing tough hydrogels that can be used in continuous load-bearing scenarios without sacrificing other equally important mechanical features. This review summarises the evolving synthesis rationale and strategies to develop tough hydrogels, including recent considerations of biomimetic designs, which enables diverse applications of hydrogels in tissue engineering, adhesives, and drug delivery system Although challenges remain in this field, the translational applications of hydrogels are rapidly progressing, broadening the scope of material science and biomedicine.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"161 ","pages":"Article 101929"},"PeriodicalIF":26.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable cellulose ester blends: Studies, compatibilization, biodegradable behavior, and applications. A review 可生物降解纤维素酯共混物:研究、增容、可生物降解行为和应用。回顾
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-01-01 DOI: 10.1016/j.progpolymsci.2024.101919
Matias Menossi , Manjusri Misra , Amar K. Mohanty
Growing plastic production, population, and consumption are driving increased environmental pollution and waste. Without change, 12 billion metric tons of plastic waste could fill landfills or natural environments by 2050. Moving beyond the fossil fuel era towards sustainability demands using advanced renewable materials that emit minimal, or net-zero carbon emissions. Cellulose, the most abundant biopolymer found in nature, is a compelling foundation for designing functional materials. This review paper fills the void regarding the esterification of cellulose to obtain specific organic cellulose esters (CEs), its modification by incorporating agents for improved processability, and blending with biopolymers as a powerful method for obtaining materials with enhanced property-to-cost performance. Further investigation is necessary to delve into the correlations among miscibility, structure, and properties of these materials to fully exploit the potential of this approach. The miscibility of CEs with other biopolymers can vary, with partial or complete miscibility attributed to the chemical nature of polymers, hydrophilic and hydrophobic properties. This variation is a key reason for studying current compatibilization strategies. This article aims to examine the advancements in strategies for compatibilizing CE blends with biodegradable polymers, along with exploring the biodegradation behavior and applications of both unmodified and modified blends.
不断增长的塑料生产、人口和消费正在加剧环境污染和浪费。如果不改变,到2050年,120亿吨塑料垃圾将填满垃圾填埋场或自然环境。从化石燃料时代走向可持续发展,需要使用排放最少或净零碳排放的先进可再生材料。纤维素是自然界中发现的最丰富的生物聚合物,是设计功能材料的重要基础。本文综述了纤维素酯化制备特定有机纤维素酯(CEs)、加入改性剂提高加工性能以及与生物聚合物共混作为获得具有更高性能和成本的材料的有力方法等方面的研究空白。为了充分挖掘这种方法的潜力,有必要进一步研究这些材料的混相性、结构和性能之间的相关性。ce与其他生物聚合物的混相可以变化,部分或完全混相归因于聚合物的化学性质,亲疏水性和疏水性。这种变化是研究当前兼容策略的一个关键原因。本文旨在研究生物可降解聚合物与CE共混物增容策略的进展,以及未改性和改性共混物的生物降解行为和应用。
{"title":"Biodegradable cellulose ester blends: Studies, compatibilization, biodegradable behavior, and applications. A review","authors":"Matias Menossi ,&nbsp;Manjusri Misra ,&nbsp;Amar K. Mohanty","doi":"10.1016/j.progpolymsci.2024.101919","DOIUrl":"10.1016/j.progpolymsci.2024.101919","url":null,"abstract":"<div><div>Growing plastic production, population, and consumption are driving increased environmental pollution and waste. Without change, 12 billion metric tons of plastic waste could fill landfills or natural environments by 2050. Moving beyond the fossil fuel era towards sustainability demands using advanced renewable materials that emit minimal, or net-zero carbon emissions. Cellulose, the most abundant biopolymer found in nature, is a compelling foundation for designing functional materials. This review paper fills the void regarding the esterification of cellulose to obtain specific organic cellulose esters (CEs), its modification by incorporating agents for improved processability, and blending with biopolymers as a powerful method for obtaining materials with enhanced property-to-cost performance. Further investigation is necessary to delve into the correlations among miscibility, structure, and properties of these materials to fully exploit the potential of this approach. The miscibility of CEs with other biopolymers can vary, with partial or complete miscibility attributed to the chemical nature of polymers, hydrophilic and hydrophobic properties. This variation is a key reason for studying current compatibilization strategies. This article aims to examine the advancements in strategies for compatibilizing CE blends with biodegradable polymers, along with exploring the biodegradation behavior and applications of both unmodified and modified blends.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"160 ","pages":"Article 101919"},"PeriodicalIF":26.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multifaceted role of tannic acid: From its extraction and structure to antibacterial properties and applications 单宁酸的多方面作用:从其提取和结构到抗菌性能和应用
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-01-01 DOI: 10.1016/j.progpolymsci.2024.101908
Motaharesadat Hosseini , Lalehvash Moghaddam , Leonie Barner , Silvia Cometta , Dietmar W Hutmacher , Flavia Medeiros Savi
Tannic acid (TA) is a natural polyphenolic compound recognized for its distinctive physical, chemical, and biological properties, making it a promising candidate for developing functional biomaterials. This versatile polyphenol can form covalent and non-covalent interactions with various organic and inorganic biomaterials, enhancing their effectiveness and addressing inherent limitations. This review begins by outlining the extraction methods and chemical characterization of TA. It then explores TA's structural properties and molecular interactions, providing a comprehensive understanding of its essential role in improving biomaterial functionality. Additionally, the review discusses recent advancements in TA-based antibacterial strategies, offering insights into the mechanisms by which TA exerts its antibacterial effects.
单宁酸(TA)是一种天然多酚类化合物,具有独特的物理、化学和生物学特性,是开发功能性生物材料的理想材料。这种多功能多酚可以与各种有机和无机生物材料形成共价和非共价相互作用,增强其有效性并解决固有局限性。本文首先概述了TA的提取方法和化学性质。然后探讨TA的结构特性和分子相互作用,全面了解TA在改善生物材料功能方面的重要作用。此外,本文还讨论了基于TA的抗菌策略的最新进展,为TA发挥其抗菌作用的机制提供了见解。
{"title":"The multifaceted role of tannic acid: From its extraction and structure to antibacterial properties and applications","authors":"Motaharesadat Hosseini ,&nbsp;Lalehvash Moghaddam ,&nbsp;Leonie Barner ,&nbsp;Silvia Cometta ,&nbsp;Dietmar W Hutmacher ,&nbsp;Flavia Medeiros Savi","doi":"10.1016/j.progpolymsci.2024.101908","DOIUrl":"10.1016/j.progpolymsci.2024.101908","url":null,"abstract":"<div><div>Tannic acid (TA) is a natural polyphenolic compound recognized for its distinctive physical, chemical, and biological properties, making it a promising candidate for developing functional biomaterials. This versatile polyphenol can form covalent and non-covalent interactions with various organic and inorganic biomaterials, enhancing their effectiveness and addressing inherent limitations. This review begins by outlining the extraction methods and chemical characterization of TA. It then explores TA's structural properties and molecular interactions, providing a comprehensive understanding of its essential role in improving biomaterial functionality. Additionally, the review discusses recent advancements in TA-based antibacterial strategies, offering insights into the mechanisms by which TA exerts its antibacterial effects.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"160 ","pages":"Article 101908"},"PeriodicalIF":26.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ring-opening polymerization of representative carbocyclic and oxacyclic monomers: Versatile platform toward advanced functional polymers 代表性碳环和氧环单体开环聚合:迈向高级功能聚合物的多功能平台
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-01-01 DOI: 10.1016/j.progpolymsci.2024.101921
Yan He , Zheng Li , Dongfang Zhao , Yong Shen , Wenxin Fu , Zhibo Li
Ring-opening polymerization (ROP) has emerged as a significant method in polymer synthesis, with a focus on designing and creating diverse cyclic monomers that enhance and diversify the properties of the resultant polymers. This review presents a comprehensive summary on the ROP of some classical strained and non-strained carbocyclic and oxacyclic cyclic monomers, including cyclic hydrocarbons, cyclic lactones, norbornene and its derivatives, spirocycles, etc., towards promising functional polymer materials. It highlights their characteristic polymerization methods and reviews representative research studies in the preparation of functional polymers. Furthermore, it explores the evolving realm of ROP, particularly in the development of closed-loop recyclable polymers with exceptional properties. By examining cyclic monomers of varying sizes, strains, and chemical structures, this review also delves into their potential applications across fields such as microelectronics, life sciences, medicine, and battery materials. The insights and findings discussed herein offer valuable guidance for future research in this dynamic area of polymer chemistry.
开环聚合(ROP)已成为聚合物合成中的一种重要方法,其重点是设计和制造不同的环状单体,以增强和多样化所合成聚合物的性能。本文综述了一些经典的应变和非应变环单体的机械钻速,包括环烃、环内酯、降木片烯及其衍生物、螺环等,它们是有发展前景的功能高分子材料。重点介绍了它们的特点聚合方法,综述了在功能聚合物制备方面具有代表性的研究进展。此外,它还探讨了ROP的发展领域,特别是在开发具有特殊性能的闭环可回收聚合物方面。通过研究不同尺寸、菌株和化学结构的环单体,本综述还深入研究了它们在微电子、生命科学、医学和电池材料等领域的潜在应用。本文讨论的见解和发现为未来在聚合物化学这一动态领域的研究提供了有价值的指导。
{"title":"Ring-opening polymerization of representative carbocyclic and oxacyclic monomers: Versatile platform toward advanced functional polymers","authors":"Yan He ,&nbsp;Zheng Li ,&nbsp;Dongfang Zhao ,&nbsp;Yong Shen ,&nbsp;Wenxin Fu ,&nbsp;Zhibo Li","doi":"10.1016/j.progpolymsci.2024.101921","DOIUrl":"10.1016/j.progpolymsci.2024.101921","url":null,"abstract":"<div><div>Ring-opening polymerization (ROP) has emerged as a significant method in polymer synthesis, with a focus on designing and creating diverse cyclic monomers that enhance and diversify the properties of the resultant polymers. This review presents a comprehensive summary on the ROP of some classical strained and non-strained carbocyclic and oxacyclic cyclic monomers, including cyclic hydrocarbons, cyclic lactones, norbornene and its derivatives, spirocycles, etc., towards promising functional polymer materials. It highlights their characteristic polymerization methods and reviews representative research studies in the preparation of functional polymers. Furthermore, it explores the evolving realm of ROP, particularly in the development of closed-loop recyclable polymers with exceptional properties. By examining cyclic monomers of varying sizes, strains, and chemical structures, this review also delves into their potential applications across fields such as microelectronics, life sciences, medicine, and battery materials. The insights and findings discussed herein offer valuable guidance for future research in this dynamic area of polymer chemistry.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"160 ","pages":"Article 101921"},"PeriodicalIF":26.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing dynamic covalent chemistry in sustainable biomass-based polymers: Synthesis, dynamic functionalities and potential of dithiolane-containing supramolecular polymers 在可持续生物质基聚合物中利用动态共价化学:含二硫烷超分子聚合物的合成、动态功能和潜力
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2025-01-01 DOI: 10.1016/j.progpolymsci.2024.101920
Peng Tan , Wenxi Gu , Yiwei Zou , Xiao Song , Zehuan Huang , Ji Liu , Iek Man Lei
Most plastics in use today are derived from petrochemical resources, resulting in severe environmental problems. As fossil resources are depleting, polymers derived from sustainable feedstock and manufacturing routes have become increasingly in demand. However, producing bio-based polymeric materials with desired properties remains challenging. Recently, 1,2-dithiolane-containing molecules, such as biogenic thioctic acid, have gained substantial attention as promising feedstocks for developing polymers with advanced features. These molecules can be widely found in animals and plants, and feature a unique five-membered disulfide ring that endows the derived polymers with a combination of functions and properties that rarely appear in traditional biogenic polymers or classical supramolecular polymers. These include responsiveness, biocompatibility, biomedical function, self-healing capability, adhesiveness, recyclability, degradability and tuneable mechanical properties spanning from soft to stiff, without requiring elaborate synthetic processes. In this review, we provide a comprehensive review of the recent advancement in 1,2-dithiolane-containing polymers, summarising their preparation strategies, comparing the latest advances in their properties and discussing their corresponding applications. Finally, we discuss the challenges that need to be addressed in order to integrate these materials harmonically into our daily lives. This review is expected to promote the exploration in the functionalities and applications of sustainable dynamic covalent biomass-based polymers.
目前使用的塑料大多来自石油化工资源,造成了严重的环境问题。随着化石资源的消耗,来自可持续原料和制造路线的聚合物的需求越来越大。然而,生产具有理想性能的生物基聚合物材料仍然具有挑战性。最近,含有1,2-二硫代烷的分子,如生物硫辛酸,作为开发具有先进特性的聚合物的有前途的原料,受到了广泛的关注。这些分子广泛存在于动物和植物中,并具有独特的五元二硫环,使衍生聚合物具有传统生物聚合物或经典超分子聚合物中很少出现的功能和性质的组合。这些特性包括响应性、生物相容性、生物医学功能、自愈能力、粘附性、可回收性、可降解性以及从软到硬的可调机械性能,而不需要复杂的合成工艺。本文综述了1,2-二硫代烷类聚合物的最新研究进展,综述了其制备策略,比较了其性能的最新进展,并讨论了其相应的应用。最后,我们讨论了需要解决的挑战,以便将这些材料和谐地融入我们的日常生活。本文对可持续动态共价生物质基聚合物的功能和应用进行了综述。
{"title":"Harnessing dynamic covalent chemistry in sustainable biomass-based polymers: Synthesis, dynamic functionalities and potential of dithiolane-containing supramolecular polymers","authors":"Peng Tan ,&nbsp;Wenxi Gu ,&nbsp;Yiwei Zou ,&nbsp;Xiao Song ,&nbsp;Zehuan Huang ,&nbsp;Ji Liu ,&nbsp;Iek Man Lei","doi":"10.1016/j.progpolymsci.2024.101920","DOIUrl":"10.1016/j.progpolymsci.2024.101920","url":null,"abstract":"<div><div>Most plastics in use today are derived from petrochemical resources, resulting in severe environmental problems. As fossil resources are depleting, polymers derived from sustainable feedstock and manufacturing routes have become increasingly in demand. However, producing bio-based polymeric materials with desired properties remains challenging. Recently, 1,2-dithiolane-containing molecules, such as biogenic thioctic acid, have gained substantial attention as promising feedstocks for developing polymers with advanced features. These molecules can be widely found in animals and plants, and feature a unique five-membered disulfide ring that endows the derived polymers with a combination of functions and properties that rarely appear in traditional biogenic polymers or classical supramolecular polymers. These include responsiveness, biocompatibility, biomedical function, self-healing capability, adhesiveness, recyclability, degradability and tuneable mechanical properties spanning from soft to stiff, without requiring elaborate synthetic processes. In this review, we provide a comprehensive review of the recent advancement in 1,2-dithiolane-containing polymers, summarising their preparation strategies, comparing the latest advances in their properties and discussing their corresponding applications. Finally, we discuss the challenges that need to be addressed in order to integrate these materials harmonically into our daily lives. This review is expected to promote the exploration in the functionalities and applications of sustainable dynamic covalent biomass-based polymers.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"160 ","pages":"Article 101920"},"PeriodicalIF":26.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced functional membranes based on amphiphilic copolymers 基于两性共聚物的先进功能膜
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-11-13 DOI: 10.1016/j.progpolymsci.2024.101907
Zhuan Yi , Lijing Zhu , Ruiyan Xiong , Chuanjie Fang , Baoku Zhu , Liping Zhu , Hongbo Zeng
Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.
具有先进和新颖功能的膜在工业分离、水净化、能量收集和储存、医疗保健、仿生物膜等新兴应用中发挥着重要作用。膜在这些关键应用中的性能主要取决于其与周围离子、分子、颗粒、乳液和生物活性剂的界面相互作用。含有疏水性和亲水性片段的两亲共聚物会自发组装成多相和分层结构,为调节上述紧急应用中使用的膜的表面物理化学特性提供了一种通用解决方案。两亲共聚物的可控合成以及将共聚物制成具有预定性能的膜的方法对其应用至关重要。在这项工作中,我们首先总结了用于合成膜材料的两亲共聚物的聚合技术。然后,我们回顾了用两亲共聚物制造膜的方法,并总结了用两亲共聚物制造的高级功能膜的迫切应用。我们还讨论了一些尚存的挑战,并对未来前景提出了看法,特别是考虑到循环聚合物经济和人工智能已经对聚合物科学提出了新的要求。本研究全面概述了基于两亲性聚合物的功能材料的最新进展,包括聚合物结构、加工策略和膜性能之间的工作原理和关联,为通过新型两亲性共聚物的精确、功能导向合成和可控膜制造工艺开发高性能和下一代聚合物膜提供了新的见解。
{"title":"Advanced functional membranes based on amphiphilic copolymers","authors":"Zhuan Yi ,&nbsp;Lijing Zhu ,&nbsp;Ruiyan Xiong ,&nbsp;Chuanjie Fang ,&nbsp;Baoku Zhu ,&nbsp;Liping Zhu ,&nbsp;Hongbo Zeng","doi":"10.1016/j.progpolymsci.2024.101907","DOIUrl":"10.1016/j.progpolymsci.2024.101907","url":null,"abstract":"<div><div>Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101907"},"PeriodicalIF":26.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress toward sustainable polymer technologies with ball-mill grinding 利用球磨机研磨实现可持续聚合物技术的进展
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-10-28 DOI: 10.1016/j.progpolymsci.2024.101900
Antonio Rizzo , Gregory I. Peterson
The ball-mill grinding (BMG) of polymers has a long history, starting with Staudinger showing in the 1930s that polystyrene undergoes chain scission upon ball milling. However, BMG has significantly expanded from being used solely for polymer degradation to a synthetic tool for a range of applications only in the last decade. Now, BMG has emerged as a promising mechanochemistry technique for several critically important polymer technologies, such as recycling and upcycling, and often provides novel or enhanced mechanochemical reactivity. As a solid-state technique in which solvents are often minimized or eliminated, BMG provides a greener and more sustainable route to various applications. Also, in contrast to many other mechanochemistry techniques that are commonly employed with polymers, BMG has the potential to be scaled to industrially relevant levels. In our review, we provide an extended and deep overview of the phenomena that occur when polymers are subjected to BMG and show how these phenomena can be exploited for various applications. We treat particularly technologies that, especially in the context of our current plastic pollution crisis, are relevant to trending topics in the field of polymer science, such as polymer degradation, chemical recycling, recycling, and upcycling. Other important topics covered in this review include the mechanical activation of responsive polymers, by the use of mechanophores or by exploiting the reactivity of the reactive intermediates generated during chain scission, and polymer-assisted grinding, where polymers serve as additives or reagents to aid in mechanochemical syntheses or other processes.
聚合物的球磨法(BMG)由来已久,早在 20 世纪 30 年代,施陶丁格(Staudinger)就发现聚苯乙烯在球磨过程中会发生链断裂。然而,直到最近十年,球磨法才从单纯用于聚合物降解,大幅扩展为一系列应用的合成工具。现在,BMG 已成为几种极其重要的聚合物技术(如回收和升级再循环)的一种前景广阔的机械化学技术,并经常提供新的或增强的机械化学反应活性。作为一种固态技术,BMG 通常可以最大限度地减少或消除溶剂,为各种应用提供了更环保、更可持续的途径。此外,与聚合物通常采用的许多其他机械化学技术相比,BMG 有可能扩展到与工业相关的水平。在我们的综述中,我们对聚合物在受到 BMG 作用时发生的现象进行了广泛而深入的概述,并展示了如何在各种应用中利用这些现象。我们特别讨论了一些技术,尤其是在当前塑料污染危机的背景下,这些技术与聚合物科学领域的热门话题息息相关,如聚合物降解、化学回收、循环利用和升级再造。本综述涉及的其他重要主题包括:通过使用机械分子或利用链裂解过程中产生的反应性中间产物的反应性,对反应性聚合物进行机械活化;聚合物辅助研磨,即聚合物作为添加剂或试剂,辅助机械化学合成或其他工艺。
{"title":"Progress toward sustainable polymer technologies with ball-mill grinding","authors":"Antonio Rizzo ,&nbsp;Gregory I. Peterson","doi":"10.1016/j.progpolymsci.2024.101900","DOIUrl":"10.1016/j.progpolymsci.2024.101900","url":null,"abstract":"<div><div>The ball-mill grinding (BMG) of polymers has a long history, starting with Staudinger showing in the 1930s that polystyrene undergoes chain scission upon ball milling. However, BMG has significantly expanded from being used solely for polymer degradation to a synthetic tool for a range of applications only in the last decade. Now, BMG has emerged as a promising mechanochemistry technique for several critically important polymer technologies, such as recycling and upcycling, and often provides novel or enhanced mechanochemical reactivity. As a solid-state technique in which solvents are often minimized or eliminated, BMG provides a greener and more sustainable route to various applications. Also, in contrast to many other mechanochemistry techniques that are commonly employed with polymers, BMG has the potential to be scaled to industrially relevant levels. In our review, we provide an extended and deep overview of the phenomena that occur when polymers are subjected to BMG and show how these phenomena can be exploited for various applications. We treat particularly technologies that, especially in the context of our current plastic pollution crisis, are relevant to trending topics in the field of polymer science, such as polymer degradation, chemical recycling, recycling, and upcycling. Other important topics covered in this review include the mechanical activation of responsive polymers, by the use of mechanophores or by exploiting the reactivity of the reactive intermediates generated during chain scission, and polymer-assisted grinding, where polymers serve as additives or reagents to aid in mechanochemical syntheses or other processes.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101900"},"PeriodicalIF":26.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1