Exploring Cost and Environmental Implications of Optimal Technology Management Strategies in the Street Lighting Industry

Q1 Economics, Econometrics and Finance Resources, Conservation and Recycling: X Pub Date : 2020-05-01 DOI:10.1016/j.rcrx.2019.100022
Rachel Dzombak , Ebru Kasikaralar , Heather E. Dillon
{"title":"Exploring Cost and Environmental Implications of Optimal Technology Management Strategies in the Street Lighting Industry","authors":"Rachel Dzombak ,&nbsp;Ebru Kasikaralar ,&nbsp;Heather E. Dillon","doi":"10.1016/j.rcrx.2019.100022","DOIUrl":null,"url":null,"abstract":"<div><p>The market for solid-state lighting (SSL) systems has expanded 40-fold in installed lamps since 2001. At the same time, systems which preserve materials over time and promote material reuse are getting increasing attention in light of calls for reducing consumption of natural resources. As new lighting technology products are designed and brought to market, consideration must be given to how products will be managed throughout the life-cycle as well as their end-of-life (EOL) fate. Lighting-as-a-service (LaaS) business models have emerged as a potential strategy for preserving the materials embedded in lighting products. In this paper, we examine the cost and environmental implications of technology management decisions in the context of the street lighting industry, employing life-cycle assessment and a Markov Decision Process model. The goal of the research is to determine a policy that minimizes expected costs and emissions for the system over a fixed time horizon thus reducing uncertainty for managers. The model used in the paper evaluates the optimal replacement strategies for street lighting products and additionally connects the result to the optimal EOL product trajectory, taking both costs and carbon emissions into account. In doing so, we are able to more deeply understand the role that LaaS business models might play in enabling closed-loop systems within the street lighting industry.</p></div>","PeriodicalId":36714,"journal":{"name":"Resources, Conservation and Recycling: X","volume":"6 ","pages":"Article 100022"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rcrx.2019.100022","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, Conservation and Recycling: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590289X19300192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 7

Abstract

The market for solid-state lighting (SSL) systems has expanded 40-fold in installed lamps since 2001. At the same time, systems which preserve materials over time and promote material reuse are getting increasing attention in light of calls for reducing consumption of natural resources. As new lighting technology products are designed and brought to market, consideration must be given to how products will be managed throughout the life-cycle as well as their end-of-life (EOL) fate. Lighting-as-a-service (LaaS) business models have emerged as a potential strategy for preserving the materials embedded in lighting products. In this paper, we examine the cost and environmental implications of technology management decisions in the context of the street lighting industry, employing life-cycle assessment and a Markov Decision Process model. The goal of the research is to determine a policy that minimizes expected costs and emissions for the system over a fixed time horizon thus reducing uncertainty for managers. The model used in the paper evaluates the optimal replacement strategies for street lighting products and additionally connects the result to the optimal EOL product trajectory, taking both costs and carbon emissions into account. In doing so, we are able to more deeply understand the role that LaaS business models might play in enabling closed-loop systems within the street lighting industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索最优技术管理策略在路灯行业的成本和环境影响
自2001年以来,固态照明(SSL)系统的市场已经扩大了40倍。同时,根据减少自然资源消耗的呼吁,能够长期保存材料并促进材料再利用的系统正受到越来越多的关注。当新的照明技术产品被设计并推向市场时,必须考虑如何在整个生命周期内管理产品以及它们的生命周期结束(EOL)命运。照明即服务(LaaS)商业模式已经成为保护照明产品中嵌入材料的潜在策略。在本文中,我们采用生命周期评估和马尔可夫决策过程模型,研究了路灯行业背景下技术管理决策的成本和环境影响。研究的目标是确定一项政策,在固定的时间范围内使系统的预期成本和排放量最小化,从而减少管理人员的不确定性。本文使用的模型评估了路灯产品的最优替换策略,并将结果与最优EOL产品轨迹联系起来,同时考虑了成本和碳排放。在此过程中,我们能够更深入地了解LaaS商业模式在实现路灯照明行业闭环系统方面可能发挥的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources, Conservation and Recycling: X
Resources, Conservation and Recycling: X Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
14.50
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
Reconfiguring repair: Contested politics and values of repair challenge instrumental discourses found in circular economies literature WITHDRAWN: Development of an Input-output model for Food-Energy-Water Nexus in the Pacific Northwest, USA The re-direction of small deposit mining: Technological solutions for raw materials supply security in a whole systems context WITHDRAWN: Insights from combining techno-economic and life cycle assessment - a case study of polyphenol extraction from red wine pomace Being shown samples of composted, granulated faecal sludge strongly influences acceptability of its use in peri-urban subsistence agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1