Enriching Visual Knowledge Bases via Object Discovery and Segmentation

Xinlei Chen, Abhinav Shrivastava, A. Gupta
{"title":"Enriching Visual Knowledge Bases via Object Discovery and Segmentation","authors":"Xinlei Chen, Abhinav Shrivastava, A. Gupta","doi":"10.1109/CVPR.2014.261","DOIUrl":null,"url":null,"abstract":"There have been some recent efforts to build visual knowledge bases from Internet images. But most of these approaches have focused on bounding box representation of objects. In this paper, we propose to enrich these knowledge bases by automatically discovering objects and their segmentations from noisy Internet images. Specifically, our approach combines the power of generative modeling for segmentation with the effectiveness of discriminative models for detection. The key idea behind our approach is to learn and exploit top-down segmentation priors based on visual subcategories. The strong priors learned from these visual subcategories are then combined with discriminatively trained detectors and bottom up cues to produce clean object segmentations. Our experimental results indicate state-of-the-art performance on the difficult dataset introduced by [29] Rubinstein et al. We have integrated our algorithm in NEIL for enriching its knowledge base [5]. As of 14th April 2014, NEIL has automatically generated approximately 500K segmentations using web data.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

There have been some recent efforts to build visual knowledge bases from Internet images. But most of these approaches have focused on bounding box representation of objects. In this paper, we propose to enrich these knowledge bases by automatically discovering objects and their segmentations from noisy Internet images. Specifically, our approach combines the power of generative modeling for segmentation with the effectiveness of discriminative models for detection. The key idea behind our approach is to learn and exploit top-down segmentation priors based on visual subcategories. The strong priors learned from these visual subcategories are then combined with discriminatively trained detectors and bottom up cues to produce clean object segmentations. Our experimental results indicate state-of-the-art performance on the difficult dataset introduced by [29] Rubinstein et al. We have integrated our algorithm in NEIL for enriching its knowledge base [5]. As of 14th April 2014, NEIL has automatically generated approximately 500K segmentations using web data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对象发现和分割来丰富视觉知识库
最近已经有了一些从互联网图像中建立视觉知识库的努力。但这些方法大多集中在对象的边界框表示上。在本文中,我们提出通过从噪声的互联网图像中自动发现对象及其分割来丰富这些知识库。具体来说,我们的方法结合了分割的生成建模的力量和检测的判别模型的有效性。我们的方法背后的关键思想是学习和利用基于视觉子类别的自上而下的分割先验。然后将从这些视觉子类别中学习到的强先验与鉴别训练的检测器和自下而上的线索相结合,以产生清晰的对象分割。我们的实验结果表明,Rubinstein等人[29]引入的困难数据集具有最先进的性能。我们将我们的算法集成到NEIL中,以丰富其知识库[5]。截至2014年4月14日,NEIL已经使用网络数据自动生成了大约500K个分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1