{"title":"Alternative Trust Sources: Reducing DNSSEC Signature Verification Operations with TLS","authors":"S. Donovan, N. Feamster","doi":"10.1145/2785956.2790001","DOIUrl":null,"url":null,"abstract":"DNSSEC has been in development for 20 years. It provides for provable security when retrieving domain names through the use of a public key infrastructure (PKI). Unfortunately, there is also significant overhead involved with DNSSEC: verifying certificate chains of signed DNS messages involves extra computation, queries to remote resolvers, additional transfers, and introduces added latency into the DNS query path. We pose the question: is it possible to achieve practical security without always verifying this certificate chain if we use a different, outside source of trust between resolvers? We believe we can. Namely, by using a long-lived, mutually authenticated TLS connection between pairs of DNS resolvers, we suggest that we can maintain near-equivalent levels of security with very little extra overhead compared to a non-DNSSEC enabled resolver. By using a reputation system or probabilistically verifying a portion of DNSSEC responses would allow for near-equivalent levels of security to be reached, even in the face of compromised resolvers.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"33 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2790001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
DNSSEC has been in development for 20 years. It provides for provable security when retrieving domain names through the use of a public key infrastructure (PKI). Unfortunately, there is also significant overhead involved with DNSSEC: verifying certificate chains of signed DNS messages involves extra computation, queries to remote resolvers, additional transfers, and introduces added latency into the DNS query path. We pose the question: is it possible to achieve practical security without always verifying this certificate chain if we use a different, outside source of trust between resolvers? We believe we can. Namely, by using a long-lived, mutually authenticated TLS connection between pairs of DNS resolvers, we suggest that we can maintain near-equivalent levels of security with very little extra overhead compared to a non-DNSSEC enabled resolver. By using a reputation system or probabilistically verifying a portion of DNSSEC responses would allow for near-equivalent levels of security to be reached, even in the face of compromised resolvers.