ML algorithms for the assessment of prescribed physical exercises

S. G. D. Villa, Andrea Martínez Parra, Ana Jiménez Martín, Juan Jesús García Domínguez, D. Casillas-Pérez
{"title":"ML algorithms for the assessment of prescribed physical exercises","authors":"S. G. D. Villa, Andrea Martínez Parra, Ana Jiménez Martín, Juan Jesús García Domínguez, D. Casillas-Pérez","doi":"10.1109/MeMeA52024.2021.9478725","DOIUrl":null,"url":null,"abstract":"Home-based physical therapies are specially effective if the prescribed exercises are correctly executed. That is specially important for older adults who can easily forget the guidelines given by therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving information of patients’ motion data. In this work, we propose the use of Machine Learning (ML) techniques to asses whether a given exercise is properly executed using data from IMUs. We evaluate the performance of four ML classifiers in the context of binary classification of the performance of a given exercise. We apply our proposal to a set of 7 exercises of the upper-and lower-limbs frequently proposed in physical therapy routines, carried out by 14 volunteers. The findings of this study support the possibility of automatically evaluate exercises in a physical therapy routine, with a misclassification error of 0.5% with the best evaluated algorithm, the support vector machine with a polynomial kernel. Sensitivity and specificity achieve values over 99% in the detection of wrongly performed motions.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"32 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Home-based physical therapies are specially effective if the prescribed exercises are correctly executed. That is specially important for older adults who can easily forget the guidelines given by therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving information of patients’ motion data. In this work, we propose the use of Machine Learning (ML) techniques to asses whether a given exercise is properly executed using data from IMUs. We evaluate the performance of four ML classifiers in the context of binary classification of the performance of a given exercise. We apply our proposal to a set of 7 exercises of the upper-and lower-limbs frequently proposed in physical therapy routines, carried out by 14 volunteers. The findings of this study support the possibility of automatically evaluate exercises in a physical therapy routine, with a misclassification error of 0.5% with the best evaluated algorithm, the support vector machine with a polynomial kernel. Sensitivity and specificity achieve values over 99% in the detection of wrongly performed motions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于评估规定的体育锻炼的ML算法
如果正确执行规定的练习,家庭物理疗法特别有效。这对老年人尤其重要,因为他们很容易忘记治疗师给出的指导。惯性测量单元(imu)通常用于跟踪运动执行,提供患者运动数据的信息。在这项工作中,我们建议使用机器学习(ML)技术来评估使用imu的数据是否正确执行给定的练习。我们在给定练习的二进制分类的背景下评估四个ML分类器的性能。我们将我们的建议应用于14名志愿者在物理治疗常规中经常提出的一套7种上肢和下肢练习。本研究的发现支持了在物理治疗常规中自动评估运动的可能性,使用评估最好的算法,即多项式核支持向量机,其误分类误差为0.5%。在检测错误执行的动作时,灵敏度和特异性达到99%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML algorithms for the assessment of prescribed physical exercises Measuring the Effect of Rhythmic Auditory Stimuli on Parkinsonian Gait in Challenging Settings A preliminary study on the dynamic characterization of a MEMS microgripper for biomedical applications Gait Parameters of Elderly Subjects in Single-task and Dual-task with three different MIMU set-ups The use of cognitive training and tDCS for the treatment of an high potential subject: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1