Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier

Zohreh Yaghoubi, Morteza Eliasi, K. Faez, Ardalan Eliasi
{"title":"Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier","authors":"Zohreh Yaghoubi, Morteza Eliasi, K. Faez, Ardalan Eliasi","doi":"10.1109/MCIT.2010.5444842","DOIUrl":null,"url":null,"abstract":"Biometrics based personal identification is regarded as an effective method for automatic identification, with a high confidence coefficient. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically provides better recognition performance compared to systems based on a single biometric modality. So in this paper we use combination of Face and Ear characteristic to individual's authentication. In our approach, features extracted using HMAX model are translation and scale-invariant. Then we applied Support vector machine (SVM) and K-nearest neighbor (KNN) classifiers to distinguish the classes. In fusion stage we use matching-score level. Experimental results showed 96% accuracy rate on ORL Face database and 94% accuracy rate on USTB Ear database; however we achieve 98% accuracy rate on Face and Ear multimodal biometric.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"44 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Biometrics based personal identification is regarded as an effective method for automatic identification, with a high confidence coefficient. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically provides better recognition performance compared to systems based on a single biometric modality. So in this paper we use combination of Face and Ear characteristic to individual's authentication. In our approach, features extracted using HMAX model are translation and scale-invariant. Then we applied Support vector machine (SVM) and K-nearest neighbor (KNN) classifiers to distinguish the classes. In fusion stage we use matching-score level. Experimental results showed 96% accuracy rate on ORL Face database and 94% accuracy rate on USTB Ear database; however we achieve 98% accuracy rate on Face and Ear multimodal biometric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉皮层和支持向量机分类器的多模态生物识别
基于生物特征的个人身份识别被认为是一种有效的自动身份识别方法,具有较高的置信度。多模态生物识别系统整合了多个生物识别来源提供的证据,与基于单一生物识别模态的系统相比,通常提供更好的识别性能。因此,本文将人脸特征和耳朵特征结合起来进行个人身份验证。在我们的方法中,使用HMAX模型提取的特征是平移和尺度不变的。然后应用支持向量机(SVM)和k近邻(KNN)分类器进行分类。在融合阶段,我们使用匹配得分水平。实验结果表明,ORL Face数据库的准确率为96%,USTB Ear数据库的准确率为94%;然而,我们在面部和耳朵的多模态生物识别上达到了98%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1