Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning

Siddhant Agarwal, M. Goyal, Adarsh Kumar, K. Rajalakshmi
{"title":"Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning","authors":"Siddhant Agarwal, M. Goyal, Adarsh Kumar, K. Rajalakshmi","doi":"10.1109/IC3.2016.7880248","DOIUrl":null,"url":null,"abstract":"In state-of-art E-learning scenarios, adaptive courses sequencing is important to save the learner loss in hyperspace. Learning material is a unstructured place in hyperspace and adaptive course sequencing light the path to learners for selecting appropriate courses with their knowledge levels. In this work, a method based on adaptive content sequencing using faculty's personal strength is proposed for providing the most suitable content out of the overloaded course material. Further, learning path is optimized using ant colony optimization on Intuitionistic fuzzy data. Results show that objectives of better contents development, coherence among courses, better teaching and learning is achievable by selecting best path in DAG traversal using proposed framework.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In state-of-art E-learning scenarios, adaptive courses sequencing is important to save the learner loss in hyperspace. Learning material is a unstructured place in hyperspace and adaptive course sequencing light the path to learners for selecting appropriate courses with their knowledge levels. In this work, a method based on adaptive content sequencing using faculty's personal strength is proposed for providing the most suitable content out of the overloaded course material. Further, learning path is optimized using ant colony optimization on Intuitionistic fuzzy data. Results show that objectives of better contents development, coherence among courses, better teaching and learning is achievable by selecting best path in DAG traversal using proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直觉模糊蚁群优化的网络学习课程排序
在最先进的电子学习场景中,自适应课程排序对于节省学习者在超空间中的损失非常重要。学习材料是超空间中的非结构化位置,自适应课程排序为学习者选择适合其知识水平的课程指明了道路。在这项工作中,提出了一种基于自适应内容排序的方法,利用教师的个人力量,从过载的课程材料中提供最合适的内容。在此基础上,利用蚁群算法对直觉模糊数据进行学习路径优化。结果表明,利用所提出的框架在DAG遍历中选择最佳路径,可以实现更好的内容开发、课程之间的一致性、更好的教与学目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning JIIT-edu: An android application for college faculty Exploring academia industry linkage through co-authorship social networks Framework to extract context vectors from unstructured data using big data analytics Temperature and energy aware scheduling of heterogeneous processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1