Combined prediction model of tuberculosis based on generalized regression neural network

Xuan Chen, J. Sa, Mingze Li, Yupei Zhou
{"title":"Combined prediction model of tuberculosis based on generalized regression neural network","authors":"Xuan Chen, J. Sa, Mingze Li, Yupei Zhou","doi":"10.1109/ICAICA50127.2020.9182578","DOIUrl":null,"url":null,"abstract":"Tuberculosis is a major public health issue of global concern. This article analyzes the data of tuberculosis incidence in age groups between 0–60 years in China from 2004 to 2016. This article predicts the trend of tuberculosis incidence in ages between 0–60 years in 2020. For the same prediction method, a single model can only provide information from one perspective. In this article, the autoregressive moving average model and the gray prediction model are used to make predictions respectively. Then the generalized regression neural network is used to weight dynamically based on two models' prediction results. So prediction results of the neural network are more accurate, and provide a scientific basis for conducting corresponding prevention and control measures.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"137 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tuberculosis is a major public health issue of global concern. This article analyzes the data of tuberculosis incidence in age groups between 0–60 years in China from 2004 to 2016. This article predicts the trend of tuberculosis incidence in ages between 0–60 years in 2020. For the same prediction method, a single model can only provide information from one perspective. In this article, the autoregressive moving average model and the gray prediction model are used to make predictions respectively. Then the generalized regression neural network is used to weight dynamically based on two models' prediction results. So prediction results of the neural network are more accurate, and provide a scientific basis for conducting corresponding prevention and control measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义回归神经网络的肺结核联合预测模型
结核病是全球关注的一个重大公共卫生问题。本文分析了2004 - 2016年中国0-60岁年龄组结核病发病率数据。本文预测了2020年中国0 ~ 60岁人群结核病发病趋势。对于相同的预测方法,单个模型只能从一个角度提供信息。本文分别采用自回归移动平均模型和灰色预测模型进行预测。然后利用广义回归神经网络对两种模型的预测结果进行动态加权。因此,神经网络的预测结果更加准确,为开展相应的防控措施提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1