Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation

Desheng Cai, Shengsheng Qian, Quan Fang, Jun Hu, Changsheng Xu
{"title":"Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation","authors":"Desheng Cai, Shengsheng Qian, Quan Fang, Jun Hu, Changsheng Xu","doi":"10.1145/3503161.3548420","DOIUrl":null,"url":null,"abstract":"Micro-video recommendation has attracted extensive research attention with the increasing popularity of micro-video sharing platforms. There exists a substantial amount of excellent efforts made to the micro-video recommendation task. Recently, homogeneous (or heterogeneous) GNN-based approaches utilize graph convolutional operators (or meta-path based similarity measures) to learn meaningful representations for users and micro-videos and show promising performance for the micro-video recommendation task. However, these methods may suffer from the following problems: (1) fail to aggregate information from distant or long-range nodes; (2) ignore the varying intensity of users' preferences for different items in micro-video recommendations; (3) neglect the similarities of multi-modal contents of micro-videos for recommendation tasks. In this paper, we propose a novel Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for personalized micro-video recommendation. Specifically, we design a collaborative representation learning module and a semantic representation learning module to fully exploit user-video interaction information and the similarities of micro-videos, respectively. Furthermore, we utilize an anti-bottleneck module to automatically learn the importance weights of short-range and long-range neighboring nodes to obtain more expressive representations of users and micro-videos. Finally, to consider the varying intensity of users' preferences for different micro-videos, we design and optimize an adaptive recommendation loss to train our model in an end-to-end manner. We evaluate our method on three real-world datasets and the results demonstrate that the proposed model outperforms the baselines.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"11 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Micro-video recommendation has attracted extensive research attention with the increasing popularity of micro-video sharing platforms. There exists a substantial amount of excellent efforts made to the micro-video recommendation task. Recently, homogeneous (or heterogeneous) GNN-based approaches utilize graph convolutional operators (or meta-path based similarity measures) to learn meaningful representations for users and micro-videos and show promising performance for the micro-video recommendation task. However, these methods may suffer from the following problems: (1) fail to aggregate information from distant or long-range nodes; (2) ignore the varying intensity of users' preferences for different items in micro-video recommendations; (3) neglect the similarities of multi-modal contents of micro-videos for recommendation tasks. In this paper, we propose a novel Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for personalized micro-video recommendation. Specifically, we design a collaborative representation learning module and a semantic representation learning module to fully exploit user-video interaction information and the similarities of micro-videos, respectively. Furthermore, we utilize an anti-bottleneck module to automatically learn the importance weights of short-range and long-range neighboring nodes to obtain more expressive representations of users and micro-videos. Finally, to consider the varying intensity of users' preferences for different micro-videos, we design and optimize an adaptive recommendation loss to train our model in an end-to-end manner. We evaluate our method on three real-world datasets and the results demonstrate that the proposed model outperforms the baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化微视频推荐的自适应抗瓶颈多模态图学习网络
随着微视频分享平台的日益普及,微视频推荐引起了广泛的研究关注。在微视频推荐任务上已经做了大量优秀的工作。最近,基于同质(或异构)gnn的方法利用图卷积算子(或基于元路径的相似性度量)来学习用户和微视频的有意义表示,并在微视频推荐任务中显示出令人满意的性能。然而,这些方法可能存在以下问题:(1)不能聚合来自遥远或远程节点的信息;(2)忽略了微视频推荐中用户对不同项目的偏好强度的差异;(3)在推荐任务中忽略了微视频多模态内容的相似性。本文提出了一种新的自适应抗瓶颈多模态图学习网络,用于个性化微视频推荐。具体而言,我们设计了一个协作表示学习模块和一个语义表示学习模块,分别充分利用用户视频交互信息和微视频的相似性。此外,我们利用反瓶颈模块自动学习近距离和远程相邻节点的重要权重,以获得更有表现力的用户和微视频表示。最后,考虑到用户对不同微视频的不同偏好强度,我们设计并优化了一个自适应推荐损失,以端到端方式训练我们的模型。我们在三个真实数据集上评估了我们的方法,结果表明所提出的模型优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1