Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition

Thimal Kempitiya, Daswin de Silva, Sachin Kahawala, D. Haputhanthri, D. Alahakoon, Evgeny Osipov
{"title":"Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition","authors":"Thimal Kempitiya, Daswin de Silva, Sachin Kahawala, D. Haputhanthri, D. Alahakoon, Evgeny Osipov","doi":"10.1109/IJCNN55064.2022.9892397","DOIUrl":null,"url":null,"abstract":"Sequence-based methods for visual place recognition (VPR) have great importance due to their ability of additional information capture through the sequences compared to single image comparison. Vector symbolic architecture (VSA) started to gain attention within these methods due to the unique capabilities for representing variable-length sequences using single high-dimensional vectors. But the effect of different sequence parameters for the visual place recognition task is yet to be explored. In this work, we explore the parametrization of sequence encoding with VSA in the SeqNet variant of sequence-based visual place recognition and introduce a new hierarchical VPR method, which utilizes the proposed parametrization. We show that with our parametrization the VSA realization of sequence-based visual place recognition achieves on par results to conventional algorithms, while featuring the capability of being implemented on novel neuromorphic hardware for efficient execution.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"5 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence-based methods for visual place recognition (VPR) have great importance due to their ability of additional information capture through the sequences compared to single image comparison. Vector symbolic architecture (VSA) started to gain attention within these methods due to the unique capabilities for representing variable-length sequences using single high-dimensional vectors. But the effect of different sequence parameters for the visual place recognition task is yet to be explored. In this work, we explore the parametrization of sequence encoding with VSA in the SeqNet variant of sequence-based visual place recognition and introduce a new hierarchical VPR method, which utilizes the proposed parametrization. We show that with our parametrization the VSA realization of sequence-based visual place recognition achieves on par results to conventional algorithms, while featuring the capability of being implemented on novel neuromorphic hardware for efficient execution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于序列编码的矢量符号方法参数化视觉位置识别
基于序列的视觉位置识别(VPR)方法与单幅图像比较相比,能够通过序列捕获额外的信息,因此具有重要的意义。向量符号体系结构(VSA)开始在这些方法中获得关注,因为它具有使用单个高维向量表示变长序列的独特能力。但是不同的序列参数对视觉位置识别任务的影响还有待研究。在这项工作中,我们在基于序列的视觉位置识别的SeqNet变体中探索了VSA序列编码的参数化,并引入了一种新的分层VPR方法,该方法利用了所提出的参数化。我们表明,通过我们的参数化,基于序列的视觉位置识别的VSA实现达到了与传统算法相当的结果,同时具有在新型神经形态硬件上实现高效执行的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1