A Learning-Based System for Monitoring Electrical Load in Smart Grid

S. Ding, Yidong Li, Xiaolin Xu, Hongwei Xing, Zhen Wang, Liang Chen, G. Wang, Yu Meng
{"title":"A Learning-Based System for Monitoring Electrical Load in Smart Grid","authors":"S. Ding, Yidong Li, Xiaolin Xu, Hongwei Xing, Zhen Wang, Liang Chen, G. Wang, Yu Meng","doi":"10.1109/PDCAT.2016.080","DOIUrl":null,"url":null,"abstract":"This paper mainly presented a system which can make a prediction to the distribution transformer's load status in smart grid. Since the operation of distribution transformer's load status is generally in the post processing stage at the current stage, lacking forecasting work on distribution transformer's operation and load status. Given the issues above, to reduce costs, ensure the security of power supply, and improve the emergency response capabilities, we presented a prediction system, which can predict the load status of distribution transformer by utilising the data mining algorithm. Besides, the system also provides a platform for the management and maintenance of electrified wire netting's information. In this system, users can conveniently manage the vast and multifarious data sets.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly presented a system which can make a prediction to the distribution transformer's load status in smart grid. Since the operation of distribution transformer's load status is generally in the post processing stage at the current stage, lacking forecasting work on distribution transformer's operation and load status. Given the issues above, to reduce costs, ensure the security of power supply, and improve the emergency response capabilities, we presented a prediction system, which can predict the load status of distribution transformer by utilising the data mining algorithm. Besides, the system also provides a platform for the management and maintenance of electrified wire netting's information. In this system, users can conveniently manage the vast and multifarious data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的智能电网负荷监测系统
本文主要介绍了一种智能电网中配电变压器负荷状态预测系统。由于现阶段配电变压器负荷状态的运行一般处于后处理阶段,缺乏对配电变压器运行和负荷状态的预测工作。鉴于上述问题,为了降低成本,保证供电安全,提高应急响应能力,我们提出了一种利用数据挖掘算法预测配电变压器负荷状态的预测系统。此外,该系统还为电网信息的管理和维护提供了一个平台。在该系统中,用户可以方便地管理庞大而多样的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Learning-Based System for Monitoring Electrical Load in Smart Grid A Domain-Independent Hybrid Approach for Automatic Taxonomy Induction CUDA-Based Parallel Implementation of IBM Word Alignment Algorithm for Statistical Machine Translation Optimal Scheduling Algorithm of MapReduce Tasks Based on QoS in the Hybrid Cloud Pre-Impact Fall Detection Based on Wearable Device Using Dynamic Threshold Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1