Visual object tracking in a parking garage using compressed domain analysis

Daniel Becker, Matthias Schmidt, Fernando Bombardelli da Silva, Serhan Gül, C. Hellge, Oliver Sawade, I. Radusch
{"title":"Visual object tracking in a parking garage using compressed domain analysis","authors":"Daniel Becker, Matthias Schmidt, Fernando Bombardelli da Silva, Serhan Gül, C. Hellge, Oliver Sawade, I. Radusch","doi":"10.1145/3204949.3208117","DOIUrl":null,"url":null,"abstract":"Modern driver assistance systems enable a variety of use cases which rely on accurate localization information of all traffic participants. Due to the unavailability of satellite-based localization, the use of infrastructure cameras is a promising alternative in indoor spaces such as parking garages. This paper presents a parking management system which extends the previous work of the eValet system with a low-complexity tracking functionality on compressed video bitstreams (compressed-domain tracking). The advantages of this approach include the improved robustness to partial occlusions as well as a resource-efficient processing of compressed video bit-streams. We have separated the tasks into different modules which are integrated into a comprehensive architecture. The demonstrator setup includes a 2D visualizer illustrating the operation of the algorithms on a single camera stream and a 3D visualizer displaying the abstract object detections in a global reference frame.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":" 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3208117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern driver assistance systems enable a variety of use cases which rely on accurate localization information of all traffic participants. Due to the unavailability of satellite-based localization, the use of infrastructure cameras is a promising alternative in indoor spaces such as parking garages. This paper presents a parking management system which extends the previous work of the eValet system with a low-complexity tracking functionality on compressed video bitstreams (compressed-domain tracking). The advantages of this approach include the improved robustness to partial occlusions as well as a resource-efficient processing of compressed video bit-streams. We have separated the tasks into different modules which are integrated into a comprehensive architecture. The demonstrator setup includes a 2D visualizer illustrating the operation of the algorithms on a single camera stream and a 3D visualizer displaying the abstract object detections in a global reference frame.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩域分析的停车场视觉目标跟踪
现代驾驶员辅助系统可以实现各种各样的用例,这些用例依赖于所有交通参与者的准确定位信息。由于无法获得基于卫星的定位,在室内空间(如停车场)使用基础设施摄像机是一种很有前途的选择。本文提出了一个停车场管理系统,该系统扩展了eValet系统的先前工作,具有压缩视频比特流(压缩域跟踪)的低复杂度跟踪功能。该方法的优点包括提高了对部分遮挡的鲁棒性以及对压缩视频比特流的资源高效处理。我们将任务分成不同的模块,这些模块集成到一个全面的体系结构中。演示装置包括说明在单个摄像机流上算法操作的2D可视化装置和在全局参考框架中显示抽象对象检测的3D可视化装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1