An approach to semantic-based model discovery and selection

Claudia Szabo, Y. M. Teo
{"title":"An approach to semantic-based model discovery and selection","authors":"Claudia Szabo, Y. M. Teo","doi":"10.1109/WSC.2011.6148006","DOIUrl":null,"url":null,"abstract":"Model discovery and selection is an important step in component-based simulation model development. This paper proposes an efficient model discovery approach and quantifies the degrees of semantic similarity for selection of partially matched models. Models are represented as production strings as specified by an EBNF composition grammar. Together with a novel DHT overlay network, we achieve fast discovery of syntactically similar models with discovery cost independent of the model size. Next, we rank partially matched models for selection using semantic-based model attributes and behavior. Experiments conducted on a repository with 4,000 models show that on average DHT-based model lookup using production strings takes less than one millisecond compared with two minutes using naive string comparisons. Lastly, efficient model selection is a tradeoff between query representation and the computation cost of model ranking.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":" 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6148006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Model discovery and selection is an important step in component-based simulation model development. This paper proposes an efficient model discovery approach and quantifies the degrees of semantic similarity for selection of partially matched models. Models are represented as production strings as specified by an EBNF composition grammar. Together with a novel DHT overlay network, we achieve fast discovery of syntactically similar models with discovery cost independent of the model size. Next, we rank partially matched models for selection using semantic-based model attributes and behavior. Experiments conducted on a repository with 4,000 models show that on average DHT-based model lookup using production strings takes less than one millisecond compared with two minutes using naive string comparisons. Lastly, efficient model selection is a tradeoff between query representation and the computation cost of model ranking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于语义的模型发现和选择方法
模型发现和选择是基于组件的仿真模型开发的重要环节。本文提出了一种高效的模型发现方法,并量化了部分匹配模型的语义相似度。模型表示为EBNF组合语法指定的生产字符串。结合一种新的DHT覆盖网络,我们实现了语法相似模型的快速发现,并且发现成本与模型大小无关。接下来,我们使用基于语义的模型属性和行为对部分匹配的模型进行排序。在包含4,000个模型的存储库上进行的实验表明,使用生产字符串查找基于dht的模型平均花费不到1毫秒,而使用原始字符串比较则需要2分钟。最后,有效的模型选择是查询表示和模型排序计算成本之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation-based optimization of paint shops An approach to semantic-based model discovery and selection Managing patient backlog in a surgical suite that uses a block-booking scheduling system Simulation-based optimization for groups of cluster tools in semiconductor manufacturing using simulated annealing Simulation in the woods: From remote sensing based data acquisition and processing to various simulation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1