Reduction of Noises From Degraded Document Images Using Image Enhancement Techniques

N. Habibunnisha, K. Sivamani, R. Seetharaman, D. Nedumaran
{"title":"Reduction of Noises From Degraded Document Images Using Image Enhancement Techniques","authors":"N. Habibunnisha, K. Sivamani, R. Seetharaman, D. Nedumaran","doi":"10.1109/ICISC44355.2019.9036418","DOIUrl":null,"url":null,"abstract":"Evolution of digital devices and computers makes an increasing attraction in document image analysis. Many of the paper documents have been transferred and stored using digital devices in large manner. In this work, we have done image enhancement techniques to reduce the noises from degraded document images. Here, we have taken sample images from Document Image Binarization Contest (DIBCO) dataset images. We have done contrast stretching, histogram equalization, noise filtering, Laplacian transformation, global and local thresholding methods to remove show-through noise, uneven illumination noise and shot noise from degraded document images using OpenCV open source software. Further, performance metrics were estimated to understand the efficiency of the above methods in removing the aforementioned noises.","PeriodicalId":419157,"journal":{"name":"2019 Third International Conference on Inventive Systems and Control (ICISC)","volume":" 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Third International Conference on Inventive Systems and Control (ICISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISC44355.2019.9036418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Evolution of digital devices and computers makes an increasing attraction in document image analysis. Many of the paper documents have been transferred and stored using digital devices in large manner. In this work, we have done image enhancement techniques to reduce the noises from degraded document images. Here, we have taken sample images from Document Image Binarization Contest (DIBCO) dataset images. We have done contrast stretching, histogram equalization, noise filtering, Laplacian transformation, global and local thresholding methods to remove show-through noise, uneven illumination noise and shot noise from degraded document images using OpenCV open source software. Further, performance metrics were estimated to understand the efficiency of the above methods in removing the aforementioned noises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图像增强技术减少退化文档图像中的噪声
数字设备和计算机的发展使得文档图像分析越来越受到人们的关注。许多纸质文件已大量使用数字设备进行传输和存储。在这项工作中,我们做了图像增强技术,以减少噪声从退化的文档图像。在这里,我们从文档图像二值化竞赛(DIBCO)数据集图像中获取样本图像。我们使用OpenCV开源软件对退化文档图像进行对比度拉伸、直方图均衡化、噪声滤波、拉普拉斯变换、全局和局部阈值分割等方法去除透显噪声、光照不均匀噪声和射散噪声。此外,对性能指标进行了估计,以了解上述方法在去除上述噪声方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of Noises From Degraded Document Images Using Image Enhancement Techniques Effective Detection of Voice Dysfunction Using Glottic Flow Descriptors A Survey on Machine Learning in Agriculture - background work for an unmanned coconut tree harvester An Approach of Image Enhancement Technique in Recognizing the Number Plate Location FPGA Implementation of Multiplier-Accumulator Unit using Vedic multiplier and Reversible gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1