A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures

Amin Norollah, H. Beitollahi, A. Patooghy
{"title":"A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures","authors":"Amin Norollah, H. Beitollahi, A. Patooghy","doi":"10.1109/MWSCAS.2019.8885297","DOIUrl":null,"url":null,"abstract":"Sorting is one of the most important computational tasks in data processing applications. Recent studies show that the FPGA-based hardware accelerators are more efficient than the general-purpose processors and GPUs. By increasing the input records in the sorting network, the number of Compare-And-Swap (CAS) units would be increased, which in turn, will lead to increased resource consumption. In some applications, the number of available resources is limited. Thereby, it is necessary to optimize resource requirements while maintaining a sufficient level of performance. This paper presents a new sorting architecture that reduces the number of required resources compared to the state-of-the-art sorting architecture and achieves the desired performance using Unary processing. Results indicate that the proposed architecture increases throughput by 29.1% and reduces the number of LUTs by 42%, for sorting 8-input records, compared to other architecture.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sorting is one of the most important computational tasks in data processing applications. Recent studies show that the FPGA-based hardware accelerators are more efficient than the general-purpose processors and GPUs. By increasing the input records in the sorting network, the number of Compare-And-Swap (CAS) units would be increased, which in turn, will lead to increased resource consumption. In some applications, the number of available resources is limited. Thereby, it is necessary to optimize resource requirements while maintaining a sufficient level of performance. This paper presents a new sorting architecture that reduces the number of required resources compared to the state-of-the-art sorting architecture and achieves the desired performance using Unary processing. Results indicate that the proposed architecture increases throughput by 29.1% and reduces the number of LUTs by 42%, for sorting 8-input records, compared to other architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于区域和能量受限架构中数据排序的新型硬件加速器
排序是数据处理应用中最重要的计算任务之一。近年来的研究表明,基于fpga的硬件加速器比通用处理器和gpu的效率更高。通过增加排序网络中的输入记录,比较-交换(CAS)单元的数量将会增加,这反过来又会导致资源消耗的增加。在某些应用程序中,可用资源的数量是有限的。因此,有必要在保持足够的性能水平的同时优化资源需求。本文提出了一种新的排序体系结构,与最先进的排序体系结构相比,它减少了所需资源的数量,并使用一元处理实现了所需的性能。结果表明,与其他架构相比,所提出的架构在对8个输入记录进行排序时将吞吐量提高了29.1%,并将lut数量减少了42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures Design Techniques for Zero Steady-State Output Ripple in Digital Low Dropout Regulators Spectrum-Efficient Communication Over Copper Using Hybrid Amplitude and Spatial Signaling AI, IoT hardware and Algorithmic Considerations for Hearing aid and Extreme Edge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1