Software-defined extreme scale networks for bigdata applications

Haitham Ghalwash, Chun-Hsi Huang
{"title":"Software-defined extreme scale networks for bigdata applications","authors":"Haitham Ghalwash, Chun-Hsi Huang","doi":"10.1109/HPEC.2017.8091087","DOIUrl":null,"url":null,"abstract":"Software-Defined Networking (SDN) is an emerging technology that supports recent network applications. An SDN redefines networks by introducing the concept of decoupling the control plane from the data plane, thus providing centralized management, programmability, and dynamic reconfiguration. In this research, we specifically investigate the significance of using SDNs in support of Big-Data applications. SDN proved to support Big-Data applications through a more efficient use of distributed nodes. With Hadoop as an example of Big-Data application, we investigate the performance in terms of throughput and execution time for the read/write and sorting operations. The experiments take into consideration different network sizes of a Fat-tree topology. A Hadoop multi-node cluster is installed in Docker containers connected through a Fat-tree of OpenFlow switches. The packet forwarding is either by way of an SDN controller or the normal packet switching rules. Experimental results show that using an SDN controller outperforms normal forwarding by the switches. As a result, our research suggests that using SDN controllers has a strong potential to greatly enhance the performance of Big-Data applications on extreme-scale networks.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"5 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Software-Defined Networking (SDN) is an emerging technology that supports recent network applications. An SDN redefines networks by introducing the concept of decoupling the control plane from the data plane, thus providing centralized management, programmability, and dynamic reconfiguration. In this research, we specifically investigate the significance of using SDNs in support of Big-Data applications. SDN proved to support Big-Data applications through a more efficient use of distributed nodes. With Hadoop as an example of Big-Data application, we investigate the performance in terms of throughput and execution time for the read/write and sorting operations. The experiments take into consideration different network sizes of a Fat-tree topology. A Hadoop multi-node cluster is installed in Docker containers connected through a Fat-tree of OpenFlow switches. The packet forwarding is either by way of an SDN controller or the normal packet switching rules. Experimental results show that using an SDN controller outperforms normal forwarding by the switches. As a result, our research suggests that using SDN controllers has a strong potential to greatly enhance the performance of Big-Data applications on extreme-scale networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大数据应用的软件定义极端规模网络
软件定义网络(SDN)是一种支持最新网络应用的新兴技术。SDN通过引入将控制平面与数据平面解耦的概念来重新定义网络,从而提供集中管理、可编程性和动态重新配置。在本研究中,我们专门研究了使用sdn支持大数据应用的重要性。事实证明,SDN通过更有效地使用分布式节点来支持大数据应用。以Hadoop作为大数据应用的一个例子,我们从吞吐量和执行时间的角度来研究读写和排序操作的性能。实验考虑了不同网络大小的胖树拓扑结构。Hadoop多节点集群安装在通过OpenFlow交换机Fat-tree连接的Docker容器中。报文转发可以通过SDN控制器,也可以通过正常的报文交换规则。实验结果表明,SDN控制器的转发性能优于交换机的正常转发。因此,我们的研究表明,使用SDN控制器具有极大的潜力,可以极大地提高超大规模网络上大数据应用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1