Increasing cluster uniqueness in Fuzzy C-Means through affinity measure

A. Banumathi, A. Pethalakshmi
{"title":"Increasing cluster uniqueness in Fuzzy C-Means through affinity measure","authors":"A. Banumathi, A. Pethalakshmi","doi":"10.1109/ICPRIME.2012.6208282","DOIUrl":null,"url":null,"abstract":"Clustering is a widely used technique in data mining application for discovering patterns in large dataset. In this paper the Fuzzy C-Means algorithm is analyzed and found that quality of the resultant cluster is based on the initial seed where it is selected either sequentially or randomly. Fuzzy C-Means uses K-Means clustering approach for the initial operation of clustering and then degree of membership is calculated. Fuzzy C-Means is very similar to the K-Means algorithm and hence in this paper K-Means is outlined and proved how the drawback of K-Means algorithm is rectified through UCAM (Unique Clustering with Affinity Measure) clustering algorithm and then UCAM is refined to give a new view namely Fuzzy-UCAM. Fuzzy C-Means algorithm should be initiated with the number of cluster C and initial seeds. For real time large database it's difficult to predict the number of cluster and initial seeds accurately. In order to overcome this drawback the current paper focused on developing the Fuzzy-UCAM algorithm for clustering without giving initial seed and number of clusters for Fuzzy C-Means. Unique clustering is obtained with the help of affinity measures.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"341 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering is a widely used technique in data mining application for discovering patterns in large dataset. In this paper the Fuzzy C-Means algorithm is analyzed and found that quality of the resultant cluster is based on the initial seed where it is selected either sequentially or randomly. Fuzzy C-Means uses K-Means clustering approach for the initial operation of clustering and then degree of membership is calculated. Fuzzy C-Means is very similar to the K-Means algorithm and hence in this paper K-Means is outlined and proved how the drawback of K-Means algorithm is rectified through UCAM (Unique Clustering with Affinity Measure) clustering algorithm and then UCAM is refined to give a new view namely Fuzzy-UCAM. Fuzzy C-Means algorithm should be initiated with the number of cluster C and initial seeds. For real time large database it's difficult to predict the number of cluster and initial seeds accurately. In order to overcome this drawback the current paper focused on developing the Fuzzy-UCAM algorithm for clustering without giving initial seed and number of clusters for Fuzzy C-Means. Unique clustering is obtained with the help of affinity measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过亲和度量提高模糊c均值聚类唯一性
聚类是一种广泛应用于数据挖掘的技术,用于在大数据集中发现模式。本文对模糊c均值算法进行了分析,发现聚类结果的质量取决于初始种子,初始种子的选择可以是顺序的,也可以是随机的。模糊C-Means采用K-Means聚类方法进行聚类的初始操作,然后计算隶属度。模糊C-Means与K-Means算法非常相似,因此本文概述了K-Means算法,并证明了如何通过UCAM (Unique Clustering with Affinity Measure)聚类算法纠正K-Means算法的缺点,然后对UCAM进行改进,给出了一种新的观点,即Fuzzy-UCAM。模糊C-均值算法的初始化需要有聚类C的个数和初始种子的个数。对于实时的大型数据库,很难准确地预测聚类和初始种子的数量。为了克服这一缺点,本文重点研究了不给出模糊c均值初始种子和簇数的Fuzzy- ucam聚类算法。利用亲和度量获得了唯一的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1