Efficient Maximally Stable Extremal Region (MSER) Tracking

M. Donoser, H. Bischof
{"title":"Efficient Maximally Stable Extremal Region (MSER) Tracking","authors":"M. Donoser, H. Bischof","doi":"10.1109/CVPR.2006.107","DOIUrl":null,"url":null,"abstract":"This paper introduces a tracking method for the well known local MSER (Maximally Stable Extremal Region) detector. The component tree is used as an efficient data structure, which allows the calculation of MSERs in quasi-linear time. It is demonstrated that the tree is able to manage the required data for tracking. We show that by means of MSER tracking the computational time for the detection of single MSERs can be improved by a factor of 4 to 10. Using a weighted feature vector for data association improves the tracking stability. Furthermore, the component tree enables backward tracking which further improves the robustness. The novel MSER tracking algorithm is evaluated on a variety of scenes. In addition, we demonstrate three different applications, tracking of license plates, faces and fibers in paper, showing in all three scenarios improved speed and stability.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"31 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"330","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 330

Abstract

This paper introduces a tracking method for the well known local MSER (Maximally Stable Extremal Region) detector. The component tree is used as an efficient data structure, which allows the calculation of MSERs in quasi-linear time. It is demonstrated that the tree is able to manage the required data for tracking. We show that by means of MSER tracking the computational time for the detection of single MSERs can be improved by a factor of 4 to 10. Using a weighted feature vector for data association improves the tracking stability. Furthermore, the component tree enables backward tracking which further improves the robustness. The novel MSER tracking algorithm is evaluated on a variety of scenes. In addition, we demonstrate three different applications, tracking of license plates, faces and fibers in paper, showing in all three scenarios improved speed and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效最稳定极值区域(MSER)跟踪
本文介绍了一种局部最大稳定极值区检测器的跟踪方法。构件树是一种有效的数据结构,可以在准线性时间内计算mser。结果表明,该树能够管理所需的跟踪数据。我们表明,通过MSER跟踪,单个MSER检测的计算时间可以提高4到10倍。采用加权特征向量进行数据关联,提高了跟踪的稳定性。此外,组件树支持向后跟踪,这进一步提高了鲁棒性。在多种场景下对该算法进行了评价。此外,我们还演示了三种不同的应用,车牌、人脸和纸上纤维的跟踪,在所有三种情况下都显示了提高的速度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1