LMS is H/sup /spl infin// optimal

B. Hassibi, A.H. Sayed, T. Kailath
{"title":"LMS is H/sup /spl infin// optimal","authors":"B. Hassibi, A.H. Sayed, T. Kailath","doi":"10.1109/CDC.1993.325187","DOIUrl":null,"url":null,"abstract":"Shows that the celebrated LMS (least-mean squares) adaptive algorithm is an H/sup /spl infin// optimal filter. In other words, the LMS algorithm, which has long been regarded as an approximate least-mean squares solution, is in fact a minimizer of the H/sup /spl infin// error norm. In particular, the LMS minimizes the energy gain from the disturbances to the predicted errors, while the normalized LMS minimizes the energy gain from the disturbances to the filtered errors. Moreover, since these algorithms are central H/sup /spl infin// filters, they are also risk-sensitive optimal and minimize a certain exponential cost function. The authors discuss various implications of these results, and show how they provide theoretical justification for the widely observed excellent robustness properties of the LMS filter.<<ETX>>","PeriodicalId":147749,"journal":{"name":"Proceedings of 32nd IEEE Conference on Decision and Control","volume":"341 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 32nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1993.325187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Shows that the celebrated LMS (least-mean squares) adaptive algorithm is an H/sup /spl infin// optimal filter. In other words, the LMS algorithm, which has long been regarded as an approximate least-mean squares solution, is in fact a minimizer of the H/sup /spl infin// error norm. In particular, the LMS minimizes the energy gain from the disturbances to the predicted errors, while the normalized LMS minimizes the energy gain from the disturbances to the filtered errors. Moreover, since these algorithms are central H/sup /spl infin// filters, they are also risk-sensitive optimal and minimize a certain exponential cost function. The authors discuss various implications of these results, and show how they provide theoretical justification for the widely observed excellent robustness properties of the LMS filter.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LMS是H/sup /spl / in// optimal
证明了著名的LMS(最小均方)自适应算法是H/sup /spl中//最优滤波器。换句话说,长期以来被视为近似最小均方解的LMS算法实际上是H/sup /spl误差范数的最小化器。特别是,LMS最小化了从干扰到预测误差的能量增益,而归一化LMS最小化了从干扰到滤波误差的能量增益。此外,由于这些算法是中心H/sup /spl infin//滤波器,它们也是风险敏感的最优算法,并且最小化某个指数成本函数。作者讨论了这些结果的各种含义,并展示了它们如何为广泛观察到的LMS滤波器的出色鲁棒性提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximate decoupling and asymptotic tracking for MIMO systems LMS is H/sup /spl infin// optimal Detection of limit cycles in discrete systems with backlash and resolution Approximate linearization of nonlinear control systems Algebraic criteria for absolute stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1