{"title":"The rising tide lifts all boats: the advancement of science in cyber security (invited talk)","authors":"L. Williams","doi":"10.1145/3106237.3121272","DOIUrl":null,"url":null,"abstract":"Stolen passwords, compromised medical records, taking the internet out through video cameras– cybersecurity breaches are in the news every day. Despite all this, the practice of cybersecurity today is generally reactive rather than proactive. That is, rather than improving their defenses in advance, organizations react to attacks once they have occurred by patching the individual vulnerabilities that led to those attacks. Researchers engineer solutions to the latest form of attack. What we need, instead, are scientifically founded design principles for building in security mechanisms from the beginning, giving protection against broad classes of attacks. Through scientific measurement, we can improve our ability to make decisions that are evidence-based, proactive, and long-sighted. Recognizing these needs, the US National Security Agency (NSA) devised a new framework for collaborative research, the “Lablet” structure, with the intent to more aggressively advance the science of cybersecurity. A key motivation was to catalyze a shift in relevant areas towards a more organized and cohesive scientific community. The NSA named Carnegie Mellon University, North Carolina State University, and the University of Illinois – Urbana Champaign its initial Lablets in 2011, and added the University of Maryland in 2014. This talk will reflect on the structure of the collaborative research efforts of the Lablets, lessons learned in the transition to more scientific concepts to cybersecurity, research results in solving five hard security problems, and methods that are being used for the measurement of scientific progress of the Lablet research.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"32 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3121272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stolen passwords, compromised medical records, taking the internet out through video cameras– cybersecurity breaches are in the news every day. Despite all this, the practice of cybersecurity today is generally reactive rather than proactive. That is, rather than improving their defenses in advance, organizations react to attacks once they have occurred by patching the individual vulnerabilities that led to those attacks. Researchers engineer solutions to the latest form of attack. What we need, instead, are scientifically founded design principles for building in security mechanisms from the beginning, giving protection against broad classes of attacks. Through scientific measurement, we can improve our ability to make decisions that are evidence-based, proactive, and long-sighted. Recognizing these needs, the US National Security Agency (NSA) devised a new framework for collaborative research, the “Lablet” structure, with the intent to more aggressively advance the science of cybersecurity. A key motivation was to catalyze a shift in relevant areas towards a more organized and cohesive scientific community. The NSA named Carnegie Mellon University, North Carolina State University, and the University of Illinois – Urbana Champaign its initial Lablets in 2011, and added the University of Maryland in 2014. This talk will reflect on the structure of the collaborative research efforts of the Lablets, lessons learned in the transition to more scientific concepts to cybersecurity, research results in solving five hard security problems, and methods that are being used for the measurement of scientific progress of the Lablet research.