Improving the Fault Resilience of Neural Network Applications Through Security Mechanisms

N. I. Deligiannis, R. Cantoro, M. Reorda, Marcello Traiola, E. Valea
{"title":"Improving the Fault Resilience of Neural Network Applications Through Security Mechanisms","authors":"N. I. Deligiannis, R. Cantoro, M. Reorda, Marcello Traiola, E. Valea","doi":"10.1109/dsn-s54099.2022.00017","DOIUrl":null,"url":null,"abstract":"Numerous electronic systems store valuable intellectual property (IP) information inside non-volatile memories. In order to protect the integrity of such sensitive information from an unauthorized access or modification, encryption mechanisms are employed. From a reliability standpoint, such information can be vital to the system’s functionality and thus, dedicated techniques are employed to detect possible reliability threats (e.g., transient faults in the memory content). In this paper we explore the capability of encryption mechanisms to guarantee protection from both unauthorized access and faults, while considering a Convolutional Neural Network application whose weights represent the valuable IP of the system. Experimental results show that it is possible to achieve very high fault detection rates, thus exploiting the benefits of security mechanisms for reliability purposes as well.","PeriodicalId":267184,"journal":{"name":"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/dsn-s54099.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Numerous electronic systems store valuable intellectual property (IP) information inside non-volatile memories. In order to protect the integrity of such sensitive information from an unauthorized access or modification, encryption mechanisms are employed. From a reliability standpoint, such information can be vital to the system’s functionality and thus, dedicated techniques are employed to detect possible reliability threats (e.g., transient faults in the memory content). In this paper we explore the capability of encryption mechanisms to guarantee protection from both unauthorized access and faults, while considering a Convolutional Neural Network application whose weights represent the valuable IP of the system. Experimental results show that it is possible to achieve very high fault detection rates, thus exploiting the benefits of security mechanisms for reliability purposes as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过安全机制提高神经网络应用的故障恢复能力
许多电子系统在非易失性存储器中存储有价值的知识产权(IP)信息。为了保护这些敏感信息的完整性,防止未经授权的访问或修改,采用了加密机制。从可靠性的角度来看,这些信息对系统的功能至关重要,因此,专门的技术被用来检测可能的可靠性威胁(例如,存储器内容中的瞬时故障)。在本文中,我们探讨了加密机制的能力,以保证对未经授权的访问和故障的保护,同时考虑卷积神经网络应用,其权重代表系统的有价值的IP。实验结果表明,可以实现非常高的故障检测率,从而利用安全机制的优势来实现可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the Fault Resilience of Neural Network Applications Through Security Mechanisms Modeling Composition of Cloud Services with Complex Dependencies for Availability Assessment Welcome from the DSN 2022 General Chairs Challenges/Opportunities to Enable Dependable Scale-out System with Groq Deterministic Tensor-Streaming Processors Introduction to SELSE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1