Electro Energy Bipolar Wafer Cell Battery Technology for PHEV Applications

J. Dailey, K. Abraham, R. Plivelich, J. Landi, M. Klein
{"title":"Electro Energy Bipolar Wafer Cell Battery Technology for PHEV Applications","authors":"J. Dailey, K. Abraham, R. Plivelich, J. Landi, M. Klein","doi":"10.1109/VPPC.2007.4544147","DOIUrl":null,"url":null,"abstract":"Electro Energy, Inc. (EEI) has developed a bipolar battery utilizing a patented wafer cell design, applicable to both NiMH and Li-Ion chemistries. This battery is particularly suitable for meeting the high-voltage, high- energy demands of modern and emerging plug-in hybrid vehicles (PHEVs). EEI's battery technology has the potential to provide a rebuttal to the most common argument for not developing and mass-producing PHEVs, which is that presently available battery technologies do not provide sufficient energy density at a low enough cost and in a small enough package to make such vehicles practical. The EEI battery design is such that conventional current tabs, collectors, and inter- cell connections are eliminated, yielding a battery that is smaller and lighter than a comparable non-wafer battery having an equivalent energy density. In addition, the stacked wafer design has lower internal impedance than conventional batteries, allowing for higher discharge rates and less internal heat build-up. The NiMH version of this battery design has already been successfully demonstrated by EEI in the conversion of a Toyota Prius hybrid electric vehicle (HEV) to a PHEV. A next generation PHEV conversion using a Li-Ion wafer cell battery is presently being implemented. This paper will discuss the advantages of the wafer cell design, past experiences and results obtained with the NiMH PHEV conversion, and future expectations for the Li-Ion PHEV conversion.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"18 39","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electro Energy, Inc. (EEI) has developed a bipolar battery utilizing a patented wafer cell design, applicable to both NiMH and Li-Ion chemistries. This battery is particularly suitable for meeting the high-voltage, high- energy demands of modern and emerging plug-in hybrid vehicles (PHEVs). EEI's battery technology has the potential to provide a rebuttal to the most common argument for not developing and mass-producing PHEVs, which is that presently available battery technologies do not provide sufficient energy density at a low enough cost and in a small enough package to make such vehicles practical. The EEI battery design is such that conventional current tabs, collectors, and inter- cell connections are eliminated, yielding a battery that is smaller and lighter than a comparable non-wafer battery having an equivalent energy density. In addition, the stacked wafer design has lower internal impedance than conventional batteries, allowing for higher discharge rates and less internal heat build-up. The NiMH version of this battery design has already been successfully demonstrated by EEI in the conversion of a Toyota Prius hybrid electric vehicle (HEV) to a PHEV. A next generation PHEV conversion using a Li-Ion wafer cell battery is presently being implemented. This paper will discuss the advantages of the wafer cell design, past experiences and results obtained with the NiMH PHEV conversion, and future expectations for the Li-Ion PHEV conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于插电式混合动力汽车的电能双极晶圆电池技术
electroenergy, Inc. (EEI)利用专利晶圆电池设计开发了一种双极电池,适用于镍氢和锂离子化学。这种电池特别适合满足现代和新兴的插电式混合动力汽车(phev)的高压、高能量需求。EEI的电池技术有可能反驳那些认为不能开发和大规模生产插电式混合动力汽车的最常见的观点,即目前可用的电池技术无法以足够低的成本和足够小的包装提供足够的能量密度,使这种汽车成为现实。EEI电池的设计省去了传统的电流片、集电极和电池间连接,产生的电池比具有同等能量密度的类似非晶圆电池更小、更轻。此外,堆叠晶圆设计具有比传统电池更低的内部阻抗,允许更高的放电速率和更少的内部热量积聚。这种电池设计的镍氢版本已经被EEI成功地用于将丰田普锐斯混合动力汽车(HEV)转换为插电式混合动力汽车。使用锂离子晶圆电池的下一代PHEV转换目前正在实施中。本文将讨论晶片电池设计的优势,镍氢插电式混合动力电池转换的过去经验和结果,以及对锂离子插电式混合动力电池转换的未来期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electro Energy Bipolar Wafer Cell Battery Technology for PHEV Applications Ultracapacitor Energy Management and Controller Developments for a Series-Parallel 2-by-2 Hybrid Electric Vehicle Cell Balancing Circuit Implementation with DC/DC Converters Using Super Capacitor Equivalent Circuit Parameters Input Admittance Characteristics of Permanent Magnet Brushless AC Motor Drive Systems Three-Dimensional Energetic Dynamic Model of the Tire-Soil Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1