A Bayesian approach to the missing features problem in classification

R. Lynch, P. K. Willett
{"title":"A Bayesian approach to the missing features problem in classification","authors":"R. Lynch, P. K. Willett","doi":"10.1109/CDC.1999.827922","DOIUrl":null,"url":null,"abstract":"In this paper, the Bayesian data reduction algorithm (BDRA) is extended to classify discrete test observations given the training data contains feature vectors which are missing values. Two methods are used to model missing features in the BDRA, where performance is compared to a neural network using both simulated and real data. In general, it is shown that the BDRA is superior to the neural network.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":"4 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.827922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the Bayesian data reduction algorithm (BDRA) is extended to classify discrete test observations given the training data contains feature vectors which are missing values. Two methods are used to model missing features in the BDRA, where performance is compared to a neural network using both simulated and real data. In general, it is shown that the BDRA is superior to the neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类中缺失特征问题的贝叶斯方法
本文将贝叶斯数据约简算法(BDRA)扩展到训练数据中包含缺失值特征向量的离散测试观测值分类。使用两种方法对BDRA中的缺失特征进行建模,其中使用模拟和真实数据将性能与神经网络进行比较。总的来说,BDRA优于神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic and numerically efficient procedure for stable dynamic model inversion of LTI systems Controller design for improving the degree of stability of periodic solutions in forced nonlinear systems A Bayesian approach to the missing features problem in classification Stability analysis and systematic design of fuzzy controllers with simplified linear control rules Best linear unbiased estimation filters with FIR structures for state space signal models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1