Refined SAR image segmentation algorithm based on K-means clustering

Tao Xing, Qingrong Hu, Jun Li, Guanyong Wang
{"title":"Refined SAR image segmentation algorithm based on K-means clustering","authors":"Tao Xing, Qingrong Hu, Jun Li, Guanyong Wang","doi":"10.1109/RADAR.2016.8059487","DOIUrl":null,"url":null,"abstract":"Study on SAR image segmentation based on K-means clustering. Analyzes and refined the adaptive moving K-means clustering algorithm by refined the adaptation degree function computation method which dividing the raw adaptation degree function by a direct ratio function of the sample number in clustering and presenting a new sample point separating rule on the clustering area which has the largest adaptation degree function. Millimeter SAR image segment results verify that the refined algorithm have better quality than K-means clustering algorithms in paper for city, road and bridge. Refined K-means clustering algorithm are more efficiency than the adaptive moving K-means clustering algorithm.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Study on SAR image segmentation based on K-means clustering. Analyzes and refined the adaptive moving K-means clustering algorithm by refined the adaptation degree function computation method which dividing the raw adaptation degree function by a direct ratio function of the sample number in clustering and presenting a new sample point separating rule on the clustering area which has the largest adaptation degree function. Millimeter SAR image segment results verify that the refined algorithm have better quality than K-means clustering algorithms in paper for city, road and bridge. Refined K-means clustering algorithm are more efficiency than the adaptive moving K-means clustering algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值聚类的精细SAR图像分割算法
基于k均值聚类的SAR图像分割研究。对自适应移动k均值聚类算法进行了分析和改进,改进了自适应度函数计算方法,将原始自适应度函数除以聚类中样本数的正比函数,在自适应度函数最大的聚类区域上给出了新的样本点分离规则。对城市、道路和桥梁的毫米波SAR图像分割结果验证了改进算法比论文中的k均值聚类算法具有更好的质量。改进的k -均值聚类算法比自适应移动k -均值聚类算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1