Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artificial neural network angle generation

F. Filho, L. Tolbert, B. Ozpineci
{"title":"Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artificial neural network angle generation","authors":"F. Filho, L. Tolbert, B. Ozpineci","doi":"10.1109/IPEMC.2012.6258973","DOIUrl":null,"url":null,"abstract":"The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memory storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.","PeriodicalId":236136,"journal":{"name":"Proceedings of The 7th International Power Electronics and Motion Control Conference","volume":"1992 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 7th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2012.6258973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memory storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法和人工神经网络角度生成的多电平逆变器实时选择性谐波最小化
本文提出了一种计算多电平级联h桥变换器中不同直流源开关角的方法。在这种方法中,可以实现所需的基波,使低谐波最小化,并且可以在低内存需求的情况下实时实现系统。遗传算法是一种求解输入电压为已知变量、开关角度为未知变量的方程组的随机搜索方法。利用遗传算法生成的数据集,训练人工神经网络(ANN)来存储解决方案,而不需要过多的内存存储需求。然后,这个训练有素的人工神经网络感知每个单元的电压,并产生开关角度,以便在实时操作时将基波调节为120 V,消除或最小化低次谐波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tri-state boost PFC converter with high input power factor Application and performance of a multilevel cascaded H-bridge converter on Static Var Generator Optimum sizing of non-grid-connected wind power system incorporating battery-exchange stations Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artificial neural network angle generation Stability analysis of matrix converter with constant power loads and LC input filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1