Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints

Morad Halihal, T. Routtenberg
{"title":"Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints","authors":"Morad Halihal, T. Routtenberg","doi":"10.1109/icassp43922.2022.9747489","DOIUrl":null,"url":null,"abstract":"Admittance matrix estimation in power networks enables faster control actions following emergency scenarios, energy-saving, and other economic and security advantages. In this paper, our goal is to estimate the network admittance matrix, i.e. to learn connectivity and edge weights in the graph representation, under physical and Laplacian constraints. We use the nonlinear AC power flow measurement model, which is based on Kirchhoff’s and Ohm’s laws, with power and voltage phasor measurements. In order to recover the complex-valued admittance matrix, we formulate the associated constrained maximum likelihood (CML) estimator as the solution of a constrained optimization problem with Laplacian and sparsity constraints. We develop an efficient solution using the associated alternating direction method of multipliers (ADMM) algorithm with an ℓ1 relaxation. The ADMM algorithm is shown to outperform existing methods in the task of recovering the IEEE 14-bus test case.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Admittance matrix estimation in power networks enables faster control actions following emergency scenarios, energy-saving, and other economic and security advantages. In this paper, our goal is to estimate the network admittance matrix, i.e. to learn connectivity and edge weights in the graph representation, under physical and Laplacian constraints. We use the nonlinear AC power flow measurement model, which is based on Kirchhoff’s and Ohm’s laws, with power and voltage phasor measurements. In order to recover the complex-valued admittance matrix, we formulate the associated constrained maximum likelihood (CML) estimator as the solution of a constrained optimization problem with Laplacian and sparsity constraints. We develop an efficient solution using the associated alternating direction method of multipliers (ADMM) algorithm with an ℓ1 relaxation. The ADMM algorithm is shown to outperform existing methods in the task of recovering the IEEE 14-bus test case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉普拉斯约束和物理约束下电力系统导纳矩阵的估计
电网导纳矩阵估计可以在紧急情况下更快地控制行动,具有节能和其他经济和安全优势。在本文中,我们的目标是在物理约束和拉普拉斯约束下估计网络导纳矩阵,即学习图表示中的连通性和边权。我们采用了基于基尔霍夫定律和欧姆定律的非线性交流潮流测量模型,并测量了功率和电压相量。为了恢复复值导纳矩阵,我们将相关的约束极大似然(CML)估计量表述为具有拉普拉斯约束和稀疏约束的约束优化问题的解。我们开发了一种有效的求解方法,该方法使用了具有1弛豫的相关乘法器交替方向法(ADMM)算法。ADMM算法在恢复IEEE 14总线测试用例的任务中优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1