A motion trajectory based video retrieval system using parallel adaptive self organizing maps

Wei Qu, F. Bashir, D. Graupe, A. Khokhar, D. Schonfeld
{"title":"A motion trajectory based video retrieval system using parallel adaptive self organizing maps","authors":"Wei Qu, F. Bashir, D. Graupe, A. Khokhar, D. Schonfeld","doi":"10.1109/IJCNN.2005.1556153","DOIUrl":null,"url":null,"abstract":"We present a novel motion trajectory based video retrieval system using LAMSTAR-based adaptive self organizing maps (PASOMs) in this paper. The trajectories are extracted from video by a robust tracker. To reduce the high dimension of motion trajectories, we first decompose each trajectory into sub-trajectories by using a maximum acceleration based approach. Each subtrajectory is then modeled and coded by two different methods, polynomial curving fitting and independent component analysis. To fuse the different features of subtrajectories for more efficient and flexible retrieval, we use PASOMs as the searching tool. Experimental results show the superior performance of the proposed approach for video retrieval comparing with prior approaches.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a novel motion trajectory based video retrieval system using LAMSTAR-based adaptive self organizing maps (PASOMs) in this paper. The trajectories are extracted from video by a robust tracker. To reduce the high dimension of motion trajectories, we first decompose each trajectory into sub-trajectories by using a maximum acceleration based approach. Each subtrajectory is then modeled and coded by two different methods, polynomial curving fitting and independent component analysis. To fuse the different features of subtrajectories for more efficient and flexible retrieval, we use PASOMs as the searching tool. Experimental results show the superior performance of the proposed approach for video retrieval comparing with prior approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行自适应自组织映射的运动轨迹视频检索系统
本文提出了一种基于lamstar的自适应自组织映射(PASOMs)的运动轨迹视频检索系统。通过鲁棒跟踪器从视频中提取轨迹。为了降低运动轨迹的高维,我们首先使用基于最大加速度的方法将每个轨迹分解为子轨迹。然后通过多项式曲线拟合和独立分量分析两种不同的方法对每个子轨迹进行建模和编码。为了融合子轨迹的不同特征,提高检索的效率和灵活性,我们使用PASOMs作为搜索工具。实验结果表明,该方法在视频检索中具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference topics An analysis of underfitting in MLP networks Modular network SOM (mnSOM): from vector space to function space A motion trajectory based video retrieval system using parallel adaptive self organizing maps Neural network model for time series prediction by reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1