{"title":"Influence of the internal geometry on the elastic properties of materials using 3D printing of computer-generated random microstructures","authors":"O. Zerhouni, M. Tarantino, K. Danas, F. Hong","doi":"10.1190/SEGAM2018-2998182.1","DOIUrl":null,"url":null,"abstract":"SUMMARY Understanding elastic properties of rocks is a scientific challenge due to the complexity of their microstructures. This study combines the numerical tools to generate models for internal geometry of pores with the 3D printing technology in order to control the shape and size of pores as well as the distribution of pore’s network inside the sample. Accuracy of the printing has been assessed by optical microscopy. The numerical and experimental tests conducted on generated microstructures show that the elastic properties are independent of the size of the pore. In turn, the shape of the pore has a strong effect on the elastic properties. This study shows that in case of multiple pore types, the ones with small aspect ratios have a strong impact though of minor volume fraction. The method-ology that is developped can be extended to investigate the influence of more parameters in case of connected porosity and tests theories that have been proposed to link physical properties of reservoir rocks to their internal geometry.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"68 s1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEG Technical Program Expanded Abstracts 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/SEGAM2018-2998182.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
SUMMARY Understanding elastic properties of rocks is a scientific challenge due to the complexity of their microstructures. This study combines the numerical tools to generate models for internal geometry of pores with the 3D printing technology in order to control the shape and size of pores as well as the distribution of pore’s network inside the sample. Accuracy of the printing has been assessed by optical microscopy. The numerical and experimental tests conducted on generated microstructures show that the elastic properties are independent of the size of the pore. In turn, the shape of the pore has a strong effect on the elastic properties. This study shows that in case of multiple pore types, the ones with small aspect ratios have a strong impact though of minor volume fraction. The method-ology that is developped can be extended to investigate the influence of more parameters in case of connected porosity and tests theories that have been proposed to link physical properties of reservoir rocks to their internal geometry.