Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals

Tiantian Liu, Ming Gao, Feng Lin, Chao Wang, Zhongjie Ba, Jinsong Han, Wenyao Xu, K. Ren
{"title":"Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals","authors":"Tiantian Liu, Ming Gao, Feng Lin, Chao Wang, Zhongjie Ba, Jinsong Han, Wenyao Xu, K. Ren","doi":"10.1145/3485730.3485945","DOIUrl":null,"url":null,"abstract":"With the advance in automatic speech recognition, voice user interface has gained popularity recently. Since the COVID-19 pandemic, VUI is increasingly preferred in online communication due to its non-contact. Additionally, various ambient noise impedes the public applications of voice user interfaces due to the requirement of audio-only speech recognition methods for a high signal-to-noise ratio. In this paper, we present Wavoice, the first noise-resistant multi-modal speech recognition system that fuses two distinct voice sensing modalities, i.e., millimeter-wave (mmWave) signals and audio signals from a microphone, together. One key contribution is that we model the inherent correlation between mmWave and audio signals. Based on it, Wavoice facilitates the real-time noise-resistant voice activity detection and user targeting from multiple speakers. Furthermore, we elaborate on two novel modules into the neural attention mechanism for multi-modal signals fusion, and result in accurate speech recognition. Extensive experiments verify Wavoice's effectiveness under various conditions with the character recognition error rate below 1% in a range of 7 meters. Wavoice outperforms existing audio-only speech recognition methods with lower character error rate and word error rate. The evaluation in complex scenes validates the robustness of Wavoice.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"28 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3485945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

With the advance in automatic speech recognition, voice user interface has gained popularity recently. Since the COVID-19 pandemic, VUI is increasingly preferred in online communication due to its non-contact. Additionally, various ambient noise impedes the public applications of voice user interfaces due to the requirement of audio-only speech recognition methods for a high signal-to-noise ratio. In this paper, we present Wavoice, the first noise-resistant multi-modal speech recognition system that fuses two distinct voice sensing modalities, i.e., millimeter-wave (mmWave) signals and audio signals from a microphone, together. One key contribution is that we model the inherent correlation between mmWave and audio signals. Based on it, Wavoice facilitates the real-time noise-resistant voice activity detection and user targeting from multiple speakers. Furthermore, we elaborate on two novel modules into the neural attention mechanism for multi-modal signals fusion, and result in accurate speech recognition. Extensive experiments verify Wavoice's effectiveness under various conditions with the character recognition error rate below 1% in a range of 7 meters. Wavoice outperforms existing audio-only speech recognition methods with lower character error rate and word error rate. The evaluation in complex scenes validates the robustness of Wavoice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合毫米波和音频信号的抗噪声多模态语音识别系统
随着自动语音识别技术的发展,语音用户界面得到了广泛的应用。自新冠肺炎疫情以来,虚拟用户界面因其非接触性而日益成为在线交流的首选。此外,由于纯音频语音识别方法对高信噪比的要求,各种环境噪声阻碍了语音用户界面的公共应用。在本文中,我们介绍了Wavoice,这是第一个抗噪声多模态语音识别系统,它融合了两种不同的语音感知模式,即毫米波(mmWave)信号和来自麦克风的音频信号。一个关键的贡献是,我们建立了毫米波和音频信号之间的内在相关性模型。基于此,Wavoice实现了实时的抗噪语音活动检测和多个扬声器的用户定位。在此基础上,我们详细介绍了两个新的多模态信号融合神经注意机制模块,从而实现准确的语音识别。大量的实验验证了Wavoice在各种条件下的有效性,在7米范围内的字符识别错误率低于1%。Wavoice比现有的纯音频语音识别方法具有更低的字符错误率和单词错误率。在复杂场景下的评估验证了Wavoice的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1