Vulnerability Assessment of the Rowhammer Attack Using Machine Learning and the gem5 Simulator - Work in Progress

Loïc France, M. Mushtaq, Florent Bruguier, D. Novo, P. Benoit
{"title":"Vulnerability Assessment of the Rowhammer Attack Using Machine Learning and the gem5 Simulator - Work in Progress","authors":"Loïc France, M. Mushtaq, Florent Bruguier, D. Novo, P. Benoit","doi":"10.1145/3445969.3450425","DOIUrl":null,"url":null,"abstract":"Modern computer memories have been shown to have reliability issues. The main memory is the target of a security attack called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Multiple mitigation techniques have been proposed to counter this issue, but they all come at a non-negligible cost of performance and/or silicon surface. Some techniques rely on a detection mechanism using row access counters to trigger automatic defenses. In this paper, we propose a tool to build a system-specific detection mechanism using gem5 to simulate the system and Machine Learning to detect the attack by analyzing hardware event traces. The detection mechanism built with our tool shows high accuracy (over 99.5%) and low latency (maximum 474µs to classify when running offline in software) to detect an attack before completion.","PeriodicalId":103324,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","volume":"5 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3445969.3450425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Modern computer memories have been shown to have reliability issues. The main memory is the target of a security attack called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Multiple mitigation techniques have been proposed to counter this issue, but they all come at a non-negligible cost of performance and/or silicon surface. Some techniques rely on a detection mechanism using row access counters to trigger automatic defenses. In this paper, we propose a tool to build a system-specific detection mechanism using gem5 to simulate the system and Machine Learning to detect the attack by analyzing hardware event traces. The detection mechanism built with our tool shows high accuracy (over 99.5%) and low latency (maximum 474µs to classify when running offline in software) to detect an attack before completion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和gem5模拟器的Rowhammer攻击漏洞评估-正在进行中
现代计算机内存已被证明存在可靠性问题。主存储器是一种被称为Rowhammer的安全攻击的目标,它会在攻击者行相邻的受害细胞中引起位翻转。为了解决这个问题,已经提出了多种缓解技术,但它们都以性能和/或硅表面为代价,这是不可忽视的。一些技术依赖于使用行访问计数器的检测机制来触发自动防御。在本文中,我们提出了一种工具来构建特定于系统的检测机制,使用gem5来模拟系统和机器学习来通过分析硬件事件跟踪来检测攻击。使用我们的工具构建的检测机制显示出高精度(超过99.5%)和低延迟(在软件中离线运行时最大474µs分类),可以在攻击完成之前检测到攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability Assessment of the Rowhammer Attack Using Machine Learning and the gem5 Simulator - Work in Progress Trustworthy Data Analysis and Sensor Data Protection in Cyber-Physical Systems The HABAC Model for Smart Home IoT and Comparison to EGRBAC A Matrix for Systematic Selection of Authentication Mechanisms in Challenging Healthcare related Environments Transparent End-to-End Security for Publish/Subscribe Communication in Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1