Arnoldi process based on optimal estimation of the regularization parameter

Xie Kai, Li Tong
{"title":"Arnoldi process based on optimal estimation of the regularization parameter","authors":"Xie Kai, Li Tong","doi":"10.1109/IST.2009.5071661","DOIUrl":null,"url":null,"abstract":"Regularization is an effective method for obtaining satisfactory solutions to super-resolution image restoration problems. The application of regularization necessitates a choice of the regularization parameter as well as the stabilizing functional. However, the best choices are not known a priori for many problems. We present the method of generalized cross-validation (GCV) for obtaining optimal estimates of the regularization parameter from the degraded image data. Implementation of GCV requires costly computation. We use Arnoldi process to reduce the computation so that the GCV criterion can be implemented efficiently. The Arnoldi process can factor the system matrix in super-resolution image restoration into a Hessenberg matrix and orthogonal one. Experiments are presented which demonstrate the effectiveness and robustness of our method.","PeriodicalId":373922,"journal":{"name":"2009 IEEE International Workshop on Imaging Systems and Techniques","volume":"15 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Imaging Systems and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2009.5071661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Regularization is an effective method for obtaining satisfactory solutions to super-resolution image restoration problems. The application of regularization necessitates a choice of the regularization parameter as well as the stabilizing functional. However, the best choices are not known a priori for many problems. We present the method of generalized cross-validation (GCV) for obtaining optimal estimates of the regularization parameter from the degraded image data. Implementation of GCV requires costly computation. We use Arnoldi process to reduce the computation so that the GCV criterion can be implemented efficiently. The Arnoldi process can factor the system matrix in super-resolution image restoration into a Hessenberg matrix and orthogonal one. Experiments are presented which demonstrate the effectiveness and robustness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优估计正则化参数的Arnoldi过程
正则化是解决超分辨率图像恢复问题的有效方法。正则化的应用不仅需要正则化参数的选择,也需要稳定泛函的选择。然而,对于许多问题来说,最佳选择并不是先验的。提出了一种广义交叉验证(GCV)方法,用于从退化图像数据中获得正则化参数的最优估计。GCV的实现需要昂贵的计算。采用Arnoldi过程减少了计算量,使GCV准则能够有效地实现。Arnoldi过程可以将超分辨率图像恢复中的系统矩阵分解为一个Hessenberg矩阵和一个正交矩阵。实验证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arnoldi process based on optimal estimation of the regularization parameter A lossless coding scheme for images by using Cross point Regions on Multiple bit planes Measurement of fiber optic imaging device parameters Design and analysis of 8mm radiometer used for passive millimeter-wave image system Rate-distortion optimal wavelet packet transform for low bit rate video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1