An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques

Philipp Raith, T. Rausch, Paul Prüller, Alireza Furutanpey, S. Dustdar
{"title":"An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques","authors":"Philipp Raith, T. Rausch, Paul Prüller, Alireza Furutanpey, S. Dustdar","doi":"10.1109/IC2E55432.2022.00010","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for defining, performing, and analyzing distributed load testing experiments for benchmarking edge-cloud clusters. This end-to-end workflow helps researchers build reproducible environments to evaluate cluster management techniques. Our implementation extends the open source tool Galileo by adding support for distributed execution on Kubernetes clusters, additional system monitoring instruments, as well as out-of-the box experiment workloads. We focus on providing tools that run across popular CPU architectures and provide a set of representative workloads, such as edge AI functions. We demonstrate our framework's capabilities in a set of experiments based on use cases commonly found in edge computing systems research. Additionally, we show that the resource usage of our system is minimal and that it can run on resource-constrained devices.","PeriodicalId":415781,"journal":{"name":"2022 IEEE International Conference on Cloud Engineering (IC2E)","volume":"7 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E55432.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a framework for defining, performing, and analyzing distributed load testing experiments for benchmarking edge-cloud clusters. This end-to-end workflow helps researchers build reproducible environments to evaluate cluster management techniques. Our implementation extends the open source tool Galileo by adding support for distributed execution on Kubernetes clusters, additional system monitoring instruments, as well as out-of-the box experiment workloads. We focus on providing tools that run across popular CPU architectures and provide a set of representative workloads, such as edge AI functions. We demonstrate our framework's capabilities in a set of experiments based on use cases commonly found in edge computing systems research. Additionally, we show that the resource usage of our system is minimal and that it can run on resource-constrained devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘云集群管理技术的端到端基准测试框架
本文提出了一个框架,用于定义、执行和分析边缘云集群基准测试的分布式负载测试实验。这个端到端工作流帮助研究人员构建可再现的环境来评估集群管理技术。我们的实现扩展了开源工具Galileo,增加了对Kubernetes集群上分布式执行的支持、额外的系统监控工具,以及开箱即用的实验工作负载。我们专注于提供在流行的CPU架构上运行的工具,并提供一组具有代表性的工作负载,例如边缘AI功能。我们在一组基于边缘计算系统研究中常见用例的实验中展示了我们的框架的功能。此外,我们还展示了我们的系统的资源使用是最小的,并且它可以在资源受限的设备上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques Decentralized Computation Market for Stream Processing Applications Novel Abstraction and Offload Mechanisms for High Performance Cloud-native Distributed Object Stores Understanding Software Security Vulnerabilities in Cloud Server Systems Optimum VM Placement for NFV Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1