Multi-resolution deblurring

Michel McLaughlin, En-Ui Lin, Erik Blasch, A. Bubalo, Maria Scalzo-Cornacchia, M. Alford, M. Thomas
{"title":"Multi-resolution deblurring","authors":"Michel McLaughlin, En-Ui Lin, Erik Blasch, A. Bubalo, Maria Scalzo-Cornacchia, M. Alford, M. Thomas","doi":"10.1109/AIPR.2014.7041901","DOIUrl":null,"url":null,"abstract":"As technology advances; blur in an image remains as an ever-present issue in the image processing field. A blurred image is mathematically expressed as a convolution of a blur function with a sharp image, plus noise. Removing blur from an image has been widely researched and is still important as new images are collected. Without a reference image, identifying, measuring, and removing blur from a given image is very challenging. Deblurring involves estimating the blur kernel to match with various types of blur including camera motion/de focus or object motion. Various blur kernels have been studied over many years, but the most common function is the Gaussian. Once the blur kernel (function) is estimated, a deconvolution is performed with the kernel and the blurred image. Many existing methods operate in this manner, however, these methods remove blur from the blurred region, but alter the un-blurred regions of the image. Pixel alteration is due to the actual intensity values of the pixels in the image becoming easily distorted while being used in the deblurring process. The method proposed in this paper uses multi-resolution analysis (MRA) techniques to separate blur, edge, and noise coefficients. Deconvolution with the estimated blur kernel is then performed on these coefficients instead of the actual pixel intensity values before reconstructing the image. Additional steps will be taken to retain the quality of un-blurred regions of the blurred image. Experimental results on simulated and real data show that our approach achieves higher quality results than previous approaches on various blurry and noise images using several metrics including mutual information and structural similarity based metrics.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"17 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As technology advances; blur in an image remains as an ever-present issue in the image processing field. A blurred image is mathematically expressed as a convolution of a blur function with a sharp image, plus noise. Removing blur from an image has been widely researched and is still important as new images are collected. Without a reference image, identifying, measuring, and removing blur from a given image is very challenging. Deblurring involves estimating the blur kernel to match with various types of blur including camera motion/de focus or object motion. Various blur kernels have been studied over many years, but the most common function is the Gaussian. Once the blur kernel (function) is estimated, a deconvolution is performed with the kernel and the blurred image. Many existing methods operate in this manner, however, these methods remove blur from the blurred region, but alter the un-blurred regions of the image. Pixel alteration is due to the actual intensity values of the pixels in the image becoming easily distorted while being used in the deblurring process. The method proposed in this paper uses multi-resolution analysis (MRA) techniques to separate blur, edge, and noise coefficients. Deconvolution with the estimated blur kernel is then performed on these coefficients instead of the actual pixel intensity values before reconstructing the image. Additional steps will be taken to retain the quality of un-blurred regions of the blurred image. Experimental results on simulated and real data show that our approach achieves higher quality results than previous approaches on various blurry and noise images using several metrics including mutual information and structural similarity based metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多分辨率由模糊变清晰
随着技术的进步;在图像处理领域,图像模糊一直是一个存在的问题。模糊图像在数学上表示为模糊函数与清晰图像加上噪声的卷积。从图像中去除模糊已经得到了广泛的研究,并且随着新图像的收集仍然很重要。如果没有参考图像,从给定图像中识别、测量和去除模糊是非常具有挑战性的。去模糊包括估计模糊核以匹配各种类型的模糊,包括相机运动/失焦或物体运动。各种模糊核已经研究了很多年,但最常见的函数是高斯函数。一旦估计了模糊核(函数),对核和模糊图像进行反卷积。现有的许多方法都是以这种方式操作的,但是,这些方法从模糊区域去除模糊,但改变了图像的未模糊区域。像素改变是由于图像中像素的实际强度值在用于去模糊过程时容易失真。本文提出的方法采用多分辨率分析(MRA)技术分离模糊系数、边缘系数和噪声系数。然后用估计的模糊核对这些系数进行反卷积,而不是在重建图像之前对实际的像素强度值进行反卷积。将采取额外的步骤来保持模糊图像的未模糊区域的质量。在模拟和真实数据上的实验结果表明,我们的方法使用互信息和基于结构相似度的度量在各种模糊和噪声图像上取得了比以前的方法更高的质量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1