Statistical inference for efficient microarchitectural and application analysis

Benjamin C. Lee
{"title":"Statistical inference for efficient microarchitectural and application analysis","authors":"Benjamin C. Lee","doi":"10.1145/1188455.1188652","DOIUrl":null,"url":null,"abstract":"Microarchitectural design exploration is often inefficient and ad hoc due to computational costs of simulators. Trends toward multi-core, multi-threading lead to diversity in viable core designs, thereby requiring comprehensive design exploration while exponentially increasing design space size. Similarly, application performance topology is a function of input parameters, but models to optimize performance and/or predict scalability are increasingly difficult to derive analytically due to system complexity. We collect measurements sampled sparsely, uniformly at random from the space of interest and formulate non-linear regression models. We demonstrate the broad effectiveness of regression for predicting (1) the power and performance of a microarchitectural design space with median error rates of 5.5 to 7.5 percent using 1K samples from a 1B point space and (2) the performance of parallel applications, Semicoarsening Multigrid and High-Performance Linpack, with median error rates of 2.5 to 5.0 percent using 500 samples from more than 3K points.","PeriodicalId":115940,"journal":{"name":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","volume":"28 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microarchitectural design exploration is often inefficient and ad hoc due to computational costs of simulators. Trends toward multi-core, multi-threading lead to diversity in viable core designs, thereby requiring comprehensive design exploration while exponentially increasing design space size. Similarly, application performance topology is a function of input parameters, but models to optimize performance and/or predict scalability are increasingly difficult to derive analytically due to system complexity. We collect measurements sampled sparsely, uniformly at random from the space of interest and formulate non-linear regression models. We demonstrate the broad effectiveness of regression for predicting (1) the power and performance of a microarchitectural design space with median error rates of 5.5 to 7.5 percent using 1K samples from a 1B point space and (2) the performance of parallel applications, Semicoarsening Multigrid and High-Performance Linpack, with median error rates of 2.5 to 5.0 percent using 500 samples from more than 3K points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效的微架构和应用分析的统计推断
由于模拟器的计算成本,微架构设计探索通常是低效的和临时的。多核、多线程的趋势导致可行核心设计的多样性,因此需要全面的设计探索,同时以指数方式增加设计空间的大小。类似地,应用程序性能拓扑是输入参数的函数,但是由于系统的复杂性,用于优化性能和/或预测可伸缩性的模型越来越难以解析地推导出来。我们从感兴趣的空间中均匀随机地收集稀疏采样的测量数据,并制定非线性回归模型。我们证明了回归在预测(1)微架构设计空间的功率和性能方面的广泛有效性,使用来自1B个点空间的1K个样本,中位数错误率为5.5%至7.5%;(2)并行应用程序,semi - oarsening Multigrid和高性能Linpack的性能,使用来自超过3K个点的500个样本,中位数错误率为2.5%至5.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical inference for efficient microarchitectural and application analysis The meeting list tool - a shared application for sharing dynamic information in meetings Liquid cooling: a next generation data center strategy Performance and presentation production elements Implementing algorithms on FPGAs using high-level languages and low-level libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1