Dynamic Models for the Formal Verification of Big Data Applications Via Stochastic Model Checking

C. Mandrioli, A. Leva, M. Maggio
{"title":"Dynamic Models for the Formal Verification of Big Data Applications Via Stochastic Model Checking","authors":"C. Mandrioli, A. Leva, M. Maggio","doi":"10.1109/CCTA.2018.8511410","DOIUrl":null,"url":null,"abstract":"Big Data Applications (BDAs) manage so much data to require a cluster of machines for computation and storage. Their execution often has temporal constraints, such as deadlines to process the data. BDAs are executed within Big Data Frameworks (BDFs), that provide mechanisms to automatically manage the complexity of the computation distribution. For a BDA to fulfill its deadline when executed in a BDF, online dynamic resource allocation policies should be in place. The introduction of control for such resource allocation calls for formal verification of the closed-loop system. Model checkers verify the correct behaviour of programs, and in principle they could be used to prove properties on the BDF execution. However, the complexity of BDFs makes it infeasible to directly model the BDAs and BDFs. We propose a formalism to associate the execution of a BDA with afirst-principle dynamic simulation model that can be used for model checking in the place of the real application, making the verification viable in practice. We introduce our formalism, apply it to a well assessed framework, and test its capabilities. We show that our solution is able to capture the dynamics and prove properties of the BDA execution using a stochastic model checker.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"189 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Big Data Applications (BDAs) manage so much data to require a cluster of machines for computation and storage. Their execution often has temporal constraints, such as deadlines to process the data. BDAs are executed within Big Data Frameworks (BDFs), that provide mechanisms to automatically manage the complexity of the computation distribution. For a BDA to fulfill its deadline when executed in a BDF, online dynamic resource allocation policies should be in place. The introduction of control for such resource allocation calls for formal verification of the closed-loop system. Model checkers verify the correct behaviour of programs, and in principle they could be used to prove properties on the BDF execution. However, the complexity of BDFs makes it infeasible to directly model the BDAs and BDFs. We propose a formalism to associate the execution of a BDA with afirst-principle dynamic simulation model that can be used for model checking in the place of the real application, making the verification viable in practice. We introduce our formalism, apply it to a well assessed framework, and test its capabilities. We show that our solution is able to capture the dynamics and prove properties of the BDA execution using a stochastic model checker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机模型检验的大数据应用形式化验证的动态模型
大数据应用程序(bda)管理如此多的数据,需要一组机器进行计算和存储。它们的执行通常有时间限制,比如处理数据的最后期限。bda在大数据框架(bdf)中执行,bdf提供了自动管理计算分布复杂性的机制。为了使BDA在BDF中执行时完成其截止日期,应该使用在线动态资源分配策略。引入对这种资源分配的控制需要对闭环系统进行正式验证。模型检查器验证程序的正确行为,原则上它们可以用来证明BDF执行的属性。然而,由于bdf的复杂性,直接对bda和bdf进行建模是不可行的。我们提出了一种将BDA的执行与第一性原理动态仿真模型相关联的形式化方法,该模型可用于代替实际应用的模型检查,使验证在实践中可行。我们引入我们的形式主义,将其应用于一个经过良好评估的框架,并测试其功能。我们证明了我们的解决方案能够捕获动态,并使用随机模型检查器证明BDA执行的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1