{"title":"Machine learning for software engineering: case studies in software reuse","authors":"Justin S. Di Stefano, T. Menzies","doi":"10.1109/TAI.2002.1180811","DOIUrl":null,"url":null,"abstract":"There are many machine learning algorithms currently available. In the 21st century, the problem no longer lies in writing the learner but in choosing which learners to run on a given data set. We argue that the final choice of learners should not be exclusive; in fact, there are distinct advantages in running data sets through multiple learners. To illustrate our point, we perform a case study on a reuse data set using three different styles of learners: association rule, decision tree induction, and treatment. Software reuse is a topic of avid debate in the professional and academic arena; it has proven that it can be both a blessing and a curse. Although there is much debate over where and when reuse should be instituted into a project, our learners found some procedures which should significantly improve the odds of a reuse program succeeding.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"34 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
There are many machine learning algorithms currently available. In the 21st century, the problem no longer lies in writing the learner but in choosing which learners to run on a given data set. We argue that the final choice of learners should not be exclusive; in fact, there are distinct advantages in running data sets through multiple learners. To illustrate our point, we perform a case study on a reuse data set using three different styles of learners: association rule, decision tree induction, and treatment. Software reuse is a topic of avid debate in the professional and academic arena; it has proven that it can be both a blessing and a curse. Although there is much debate over where and when reuse should be instituted into a project, our learners found some procedures which should significantly improve the odds of a reuse program succeeding.