Á bilingual comparison of MaxEnt-and RNN-based punctuation restoration in speech transcripts

Máté Ákos Tündik, Balázs Tarján, György Szaszák
{"title":"Á bilingual comparison of MaxEnt-and RNN-based punctuation restoration in speech transcripts","authors":"Máté Ákos Tündik, Balázs Tarján, György Szaszák","doi":"10.1109/COGINFOCOM.2017.8268227","DOIUrl":null,"url":null,"abstract":"Closed captioning is a common method to improve accessibility of TV programs for people who are hearing impaired or hard of hearing, while representing an application relevant for cognitive infocommunication. However, live captions provided by automatic speech recognition systems usually lack punctuation, making them hard to follow. In this paper, Maximum Entropy and Recurrent Neural Network based punctuation restoration models are compared on two closed captioning tasks in real-time and off-line setups. We present the first results in restoring punctuation for Hungarian broadcast speech, where the RNN significantly outperforms our MaxEnt baseline system. Our approach is also evaluated on TED talks within the IWSLT English dataset providing comparable results to the state-of-the-art systems.","PeriodicalId":212559,"journal":{"name":"2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"118 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINFOCOM.2017.8268227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Closed captioning is a common method to improve accessibility of TV programs for people who are hearing impaired or hard of hearing, while representing an application relevant for cognitive infocommunication. However, live captions provided by automatic speech recognition systems usually lack punctuation, making them hard to follow. In this paper, Maximum Entropy and Recurrent Neural Network based punctuation restoration models are compared on two closed captioning tasks in real-time and off-line setups. We present the first results in restoring punctuation for Hungarian broadcast speech, where the RNN significantly outperforms our MaxEnt baseline system. Our approach is also evaluated on TED talks within the IWSLT English dataset providing comparable results to the state-of-the-art systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Á基于maxent和rnn的语音文本标点恢复的双语比较
隐式字幕是一种提高听障或重听人群电视节目的可及性的常用方法,同时也是一种与认知信息交流相关的应用。然而,自动语音识别系统提供的实时字幕通常缺乏标点符号,使其难以理解。本文比较了基于最大熵和循环神经网络的标点恢复模型在实时和离线两种情况下的封闭字幕任务。我们展示了匈牙利广播语音中恢复标点符号的第一个结果,其中RNN显着优于我们的MaxEnt基线系统。我们的方法也在IWSLT英语数据集中的TED演讲中进行了评估,提供了与最先进系统相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of cognitive load using voice features: A preliminary investigation A case study on time-interval fuzzy cognitive maps in a complex organization Á bilingual comparison of MaxEnt-and RNN-based punctuation restoration in speech transcripts Presentation of a medieval church in MaxWhere Blocklino: A graphical language for Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1