Border identification of echocardiograms via multiscale edge detection and shape modeling

A. Laine, Xuli Zong
{"title":"Border identification of echocardiograms via multiscale edge detection and shape modeling","authors":"A. Laine, Xuli Zong","doi":"10.1109/ICIP.1996.560486","DOIUrl":null,"url":null,"abstract":"An algorithm for endocardial and epicardial border identification of the left ventricle in 2-D short-axis echocardiographic images is presented. Our approach relies on shape modeling of endocardial and epicardial boundaries and prominent border information extracted from image sequences. The algorithm consists of four steps; wavelet-based edge detection, border segment extraction, border reconstruction, and boundary smoothing. Wavelet maximum representation of edges, dynamic shape modeling and matched filtering techniques are utilized to determine the center point of the left ventricle, and carry out feature extraction of border segments to better approximate endocardial and epicardial boundaries. The algorithm can reliably estimate the center point of the left ventricle, and also determine both endocardial and epicardial boundaries. Myocardial boundary identification is autonomous requiring no human input for initial estimation of boundary locations. Sample experimental results are shown for endocardial and epicardial border identification in 2-D short-axis echocardiograms.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

An algorithm for endocardial and epicardial border identification of the left ventricle in 2-D short-axis echocardiographic images is presented. Our approach relies on shape modeling of endocardial and epicardial boundaries and prominent border information extracted from image sequences. The algorithm consists of four steps; wavelet-based edge detection, border segment extraction, border reconstruction, and boundary smoothing. Wavelet maximum representation of edges, dynamic shape modeling and matched filtering techniques are utilized to determine the center point of the left ventricle, and carry out feature extraction of border segments to better approximate endocardial and epicardial boundaries. The algorithm can reliably estimate the center point of the left ventricle, and also determine both endocardial and epicardial boundaries. Myocardial boundary identification is autonomous requiring no human input for initial estimation of boundary locations. Sample experimental results are shown for endocardial and epicardial border identification in 2-D short-axis echocardiograms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度边缘检测和形状建模的超声心动图边界识别
提出了一种二维短轴超声心动图左心室心内膜和心外膜边界识别算法。我们的方法依赖于心内膜和心外膜边界的形状建模以及从图像序列中提取的突出边界信息。该算法包括四个步骤;基于小波的边缘检测,边界段提取,边界重建和边界平滑。利用小波最大边缘表示、动态形状建模和匹配滤波技术确定左心室中心点,并对边界段进行特征提取,更好地逼近心内膜和心外膜边界。该算法可以可靠地估计左心室的中心点,并确定心内膜和心外膜的边界。心肌边界识别是自主的,不需要人为输入来初始估计边界位置。图中显示了二维短轴超声心动图中心内膜和心外膜边界识别的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting halftones from printed documents using texture analysis Multiresolution mosaic Motion estimation and tracking for urban traffic monitoring On sensor image compression for high pixel rate imaging: pixel parallel and column parallel architectures Border identification of echocardiograms via multiscale edge detection and shape modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1