Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time

Valerie King, Alex Thomo, Quinton Yong
{"title":"Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time","authors":"Valerie King, Alex Thomo, Quinton Yong","doi":"10.24963/ijcai.2023/240","DOIUrl":null,"url":null,"abstract":"The problem of finding the degeneracy of a graph is a subproblem of the k-core decomposition problem. In this paper, we present a (1 + epsilon)-approximate solution to the degeneracy problem which runs in O(n log n) time, sublinear in the input size for dense graphs, by sampling a small number of neighbors adjacent to high degree nodes. This improves upon the previous work on sublinear approximate degeneracy, which implies a (4 + epsilon)-approximate ~O(n) solution. Our algorithm can be extended to an approximate O(n log n) time solution to the k-core decomposition problem. We also explore the use of our approximate algorithm as a technique for speeding up exact degeneracy computation. We prove theoretical guarantees of our algorithm and provide optimizations, which improve the running time of our algorithm in practice. Experiments on massive real-world web graphs show that our algorithm performs significantly faster than previous methods for computing degeneracy.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"33 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of finding the degeneracy of a graph is a subproblem of the k-core decomposition problem. In this paper, we present a (1 + epsilon)-approximate solution to the degeneracy problem which runs in O(n log n) time, sublinear in the input size for dense graphs, by sampling a small number of neighbors adjacent to high degree nodes. This improves upon the previous work on sublinear approximate degeneracy, which implies a (4 + epsilon)-approximate ~O(n) solution. Our algorithm can be extended to an approximate O(n log n) time solution to the k-core decomposition problem. We also explore the use of our approximate algorithm as a technique for speeding up exact degeneracy computation. We prove theoretical guarantees of our algorithm and provide optimizations, which improve the running time of our algorithm in practice. Experiments on massive real-world web graphs show that our algorithm performs significantly faster than previous methods for computing degeneracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算(1+epsilon)-亚线性时间内的近似退化
求图的退化问题是k核分解问题的一个子问题。在本文中,我们提出了一个(1 + epsilon)-近似解的退化问题,运行在O(n log n)时间,在密集图的输入大小是次线性的,通过采样少量的邻居相邻的高次节点。这改进了以前关于次线性近似退化的工作,这意味着(4 + epsilon)-近似~O(n)解。我们的算法可以扩展到k核分解问题的近似O(n log n)时间解。我们还探索了近似算法作为加速精确退化计算的技术的使用。证明了算法的理论保证,并对算法进行了优化,提高了算法在实践中的运行时间。在大量真实网络图上的实验表明,我们的算法比以前计算简并度的方法要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1