Using Crash Frequency Analysis to Identify Error-Prone Software Technologies in Multi-System Monitoring

Andreas Schörgenhumer, Mario Kahlhofer, H. Mössenböck, P. Grünbacher
{"title":"Using Crash Frequency Analysis to Identify Error-Prone Software Technologies in Multi-System Monitoring","authors":"Andreas Schörgenhumer, Mario Kahlhofer, H. Mössenböck, P. Grünbacher","doi":"10.1109/QRS.2018.00032","DOIUrl":null,"url":null,"abstract":"Faults are common in large software systems and must be analyzed to prevent future failures such as system outages. Due to their sheer amount, the observed failures cannot be inspected individually but must be automatically grouped and prioritized. An open challenge is to find similarities in failures across different systems. We propose a novel approach for identifying error-prone software technologies via a cross-system analysis based on monitoring and crash data. Our approach ranks the error-prone software technologies and analyzes the occurred exceptions, thus making it easier for developers to investigate cross-system failures. Finding such failures is highly advantageous as fixing a fault may benefit many affected systems. A preliminary case study on monitoring data of hundreds of different systems demonstrates the feasibility of our approach.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Faults are common in large software systems and must be analyzed to prevent future failures such as system outages. Due to their sheer amount, the observed failures cannot be inspected individually but must be automatically grouped and prioritized. An open challenge is to find similarities in failures across different systems. We propose a novel approach for identifying error-prone software technologies via a cross-system analysis based on monitoring and crash data. Our approach ranks the error-prone software technologies and analyzes the occurred exceptions, thus making it easier for developers to investigate cross-system failures. Finding such failures is highly advantageous as fixing a fault may benefit many affected systems. A preliminary case study on monitoring data of hundreds of different systems demonstrates the feasibility of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用崩溃频率分析识别多系统监控中容易出错的软件技术
故障在大型软件系统中很常见,必须对其进行分析,以防止将来出现故障,例如系统中断。由于它们的数量庞大,观察到的故障不能单独检查,而必须自动分组并确定优先级。一个公开的挑战是在不同的系统中找到故障的相似之处。我们提出了一种新的方法,通过基于监控和崩溃数据的跨系统分析来识别容易出错的软件技术。我们的方法对容易出错的软件技术进行排序,并分析发生的异常,从而使开发人员更容易调查跨系统故障。发现这样的故障是非常有利的,因为修复故障可能使许多受影响的系统受益。对数百个不同系统监测数据的初步案例研究证明了我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Repairing SQL Faults Using Crash Frequency Analysis to Identify Error-Prone Software Technologies in Multi-System Monitoring Target Selection for Test-Based Resource Adaptation The State of Practice on Virtual Reality (VR) Applications: An Exploratory Study on Github and Stack Overflow Detecting Errors in a Humanoid Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1