Pathological image segmentation for neuroblastoma using the GPU

A. Ruiz, Jun Kong, M. Ujaldón, K. Boyer, J. Saltz, M. Gürcan
{"title":"Pathological image segmentation for neuroblastoma using the GPU","authors":"A. Ruiz, Jun Kong, M. Ujaldón, K. Boyer, J. Saltz, M. Gürcan","doi":"10.1109/ISBI.2008.4540991","DOIUrl":null,"url":null,"abstract":"We present a novel use of GPUs (graphics processing units) for the analysis of histopathological images of neuroblastoma, a childhood cancer. Thanks to the advent of modern microscopy scanners, whole-slide histopathological images can now be acquired but the computational costs to analyze these images using sophisticated image analysis algorithms are usually high. In this study, we have implemented previously developed image analysis algorithms using GPUs to exploit their outstanding processing power and memory bandwidth. The resulting GPU code was contrasted and combined with a C++ implementation on a multicore CPU to maximize parallelism on emerging architectures. Our codes were tested on different classes of images, with performance gain factors about 5.6x when the execution time of a Matlab code running on the CPU is compared with a code running jointly on CPU and GPU.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"142 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We present a novel use of GPUs (graphics processing units) for the analysis of histopathological images of neuroblastoma, a childhood cancer. Thanks to the advent of modern microscopy scanners, whole-slide histopathological images can now be acquired but the computational costs to analyze these images using sophisticated image analysis algorithms are usually high. In this study, we have implemented previously developed image analysis algorithms using GPUs to exploit their outstanding processing power and memory bandwidth. The resulting GPU code was contrasted and combined with a C++ implementation on a multicore CPU to maximize parallelism on emerging architectures. Our codes were tested on different classes of images, with performance gain factors about 5.6x when the execution time of a Matlab code running on the CPU is compared with a code running jointly on CPU and GPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经母细胞瘤病理图像的GPU分割
我们提出了一种新的使用gpu(图形处理单元)来分析神经母细胞瘤的组织病理学图像,这是一种儿童癌症。由于现代显微镜扫描仪的出现,现在可以获得全切片组织病理学图像,但是使用复杂的图像分析算法分析这些图像的计算成本通常很高。在本研究中,我们使用gpu实现了先前开发的图像分析算法,以利用其出色的处理能力和内存带宽。将生成的GPU代码与多核CPU上的c++实现进行对比,以最大限度地提高新兴架构的并行性。我们的代码在不同类别的图像上进行了测试,当在CPU上运行的Matlab代码的执行时间与在CPU和GPU上共同运行的代码的执行时间相比,性能增益因子约为5.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1