Plant disease detection using CNNs and GANs as an augmentative approach

R. Gandhi, Shubham Nimbalkar, Nandita Yelamanchili, Surabhi Ponkshe
{"title":"Plant disease detection using CNNs and GANs as an augmentative approach","authors":"R. Gandhi, Shubham Nimbalkar, Nandita Yelamanchili, Surabhi Ponkshe","doi":"10.1109/ICIRD.2018.8376321","DOIUrl":null,"url":null,"abstract":"Almost 40% of the world's crop yield is lost to diseases and pest infestations. According to a 2012 survey, Maharashtra has the highest rate of farmer suicides and one of the major reasons for this is the failure of crops. This paper presents an image-based classification system for identification of plant diseases. Since existing datasets have diluted focus across several countries and there are none that pertain to India specifically, there is a need for establishing a local dataset to be of use to Indian farmers. It uses Generative Adversarial Networks (GANs) to augment the limited number of local images available. The classification is done by a Convolutional Neural Network (CNN) model deployed in a smart phone app.","PeriodicalId":397098,"journal":{"name":"2018 IEEE International Conference on Innovative Research and Development (ICIRD)","volume":"472 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Innovative Research and Development (ICIRD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRD.2018.8376321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Almost 40% of the world's crop yield is lost to diseases and pest infestations. According to a 2012 survey, Maharashtra has the highest rate of farmer suicides and one of the major reasons for this is the failure of crops. This paper presents an image-based classification system for identification of plant diseases. Since existing datasets have diluted focus across several countries and there are none that pertain to India specifically, there is a need for establishing a local dataset to be of use to Indian farmers. It uses Generative Adversarial Networks (GANs) to augment the limited number of local images available. The classification is done by a Convolutional Neural Network (CNN) model deployed in a smart phone app.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用cnn和gan作为辅助方法的植物病害检测
全球近40%的作物产量因病虫害而损失。根据2012年的一项调查,马哈拉施特拉邦的农民自杀率最高,其中一个主要原因是农作物歉收。提出了一种基于图像的植物病害分类系统。由于现有的数据集分散了对几个国家的关注,而且没有一个是专门针对印度的,因此有必要建立一个本地数据集,以供印度农民使用。它使用生成对抗网络(GANs)来增加有限数量的可用局部图像。分类是通过部署在智能手机应用程序中的卷积神经网络(CNN)模型完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Streamlining mobile app deployment with Jenkins and Fastlane in the case of Catrobat's pocket code Pocket code build variants Lithium recovery from Bledug Kuwu Mud volcano using water leaching method Copyright Information An approach towards developing tower of Hanoi sequence based distributed multi-channel parallel rendezvous for ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1