R. Gandhi, Shubham Nimbalkar, Nandita Yelamanchili, Surabhi Ponkshe
{"title":"Plant disease detection using CNNs and GANs as an augmentative approach","authors":"R. Gandhi, Shubham Nimbalkar, Nandita Yelamanchili, Surabhi Ponkshe","doi":"10.1109/ICIRD.2018.8376321","DOIUrl":null,"url":null,"abstract":"Almost 40% of the world's crop yield is lost to diseases and pest infestations. According to a 2012 survey, Maharashtra has the highest rate of farmer suicides and one of the major reasons for this is the failure of crops. This paper presents an image-based classification system for identification of plant diseases. Since existing datasets have diluted focus across several countries and there are none that pertain to India specifically, there is a need for establishing a local dataset to be of use to Indian farmers. It uses Generative Adversarial Networks (GANs) to augment the limited number of local images available. The classification is done by a Convolutional Neural Network (CNN) model deployed in a smart phone app.","PeriodicalId":397098,"journal":{"name":"2018 IEEE International Conference on Innovative Research and Development (ICIRD)","volume":"472 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Innovative Research and Development (ICIRD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRD.2018.8376321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
Almost 40% of the world's crop yield is lost to diseases and pest infestations. According to a 2012 survey, Maharashtra has the highest rate of farmer suicides and one of the major reasons for this is the failure of crops. This paper presents an image-based classification system for identification of plant diseases. Since existing datasets have diluted focus across several countries and there are none that pertain to India specifically, there is a need for establishing a local dataset to be of use to Indian farmers. It uses Generative Adversarial Networks (GANs) to augment the limited number of local images available. The classification is done by a Convolutional Neural Network (CNN) model deployed in a smart phone app.