Road edge detection on 3D point cloud data using Encoder-Decoder Convolutional Network

R. F. Rachmadi, K. Uchimura, G. Koutaki, K. Ogata
{"title":"Road edge detection on 3D point cloud data using Encoder-Decoder Convolutional Network","authors":"R. F. Rachmadi, K. Uchimura, G. Koutaki, K. Ogata","doi":"10.1109/KCIC.2017.8228570","DOIUrl":null,"url":null,"abstract":"The demand of High Definition Maps (HD-Maps) has been increasing, especially for autonomous vehicle application. Usually, HD-Map is created by scanning the road using LiDAR sensor and reconstructing the road on 3D world to capture all aspects of road properties. One of the important properties of a road is its edge or boundary. In this paper, we propose end-to-end 3D Encoder-Decoder Convolutional Network (3D-EDCN) for road edge detection on 3D point cloud data produced by LiDAR sensor. Our 3D-EDCN classifier consists of nine convolutional layers and three deconvolutional layers. For simplification, we use 3D voxel format as input and output of the classifier. Our proposed method was tested using our own 3D point cloud dataset which taken from LiDAR equipment and consisting of 103 3D point cloud data with their respective road edge ground truth. In the training process, we use combinations of Cross-Entropy loss function and Euclidean loss function to help our model converged. As a preliminary result, our proposed 3D-EDCN classifier achieves Mean Square Error (MSE) of 2.738×10−5, precision of 0.37262, and recall of 0.14432.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"35 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The demand of High Definition Maps (HD-Maps) has been increasing, especially for autonomous vehicle application. Usually, HD-Map is created by scanning the road using LiDAR sensor and reconstructing the road on 3D world to capture all aspects of road properties. One of the important properties of a road is its edge or boundary. In this paper, we propose end-to-end 3D Encoder-Decoder Convolutional Network (3D-EDCN) for road edge detection on 3D point cloud data produced by LiDAR sensor. Our 3D-EDCN classifier consists of nine convolutional layers and three deconvolutional layers. For simplification, we use 3D voxel format as input and output of the classifier. Our proposed method was tested using our own 3D point cloud dataset which taken from LiDAR equipment and consisting of 103 3D point cloud data with their respective road edge ground truth. In the training process, we use combinations of Cross-Entropy loss function and Euclidean loss function to help our model converged. As a preliminary result, our proposed 3D-EDCN classifier achieves Mean Square Error (MSE) of 2.738×10−5, precision of 0.37262, and recall of 0.14432.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于编解码器卷积网络的三维点云数据道路边缘检测
高清晰度地图(HD-Maps)的需求一直在增加,特别是在自动驾驶汽车应用中。通常,HD-Map是通过使用LiDAR传感器扫描道路并在3D世界上重建道路来捕获道路属性的各个方面来创建的。道路的一个重要属性是它的边缘或边界。在本文中,我们提出了端到端的3D编码器-解码器卷积网络(3D- edcn),用于激光雷达传感器产生的3D点云数据的道路边缘检测。我们的3D-EDCN分类器由九个卷积层和三个反卷积层组成。为了简化,我们使用3D体素格式作为分类器的输入和输出。使用我们自己的三维点云数据集对我们提出的方法进行了测试,该数据集来自激光雷达设备,由103个三维点云数据组成,具有各自的道路边缘地面真值。在训练过程中,我们使用交叉熵损失函数和欧几里德损失函数的组合来帮助我们的模型收敛。作为初步结果,我们提出的3D-EDCN分类器的均方误差(MSE)为2.738×10−5,精度为0.37262,召回率为0.14432。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy system for quality assurance of crowdsourced wildlife observation geodata Semantic spatial weighted regression for realizing spatial correlation of deforestation effect on soil degradation UAV-based multispectral aerial image retrieval using spectral feature and semantic computing Disaster detection from aerial imagery with convolutional neural network A realtime sensing-data-triggered news article provision system with 5D world map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1